Archives of Toxicology

, Volume 87, Issue 2, pp 371–382 | Cite as

Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans

  • Yanqiong Zhang
  • Dongliang Chen
  • Adrien C. Ennis
  • Joseph R. Polli
  • Peng Xiao
  • Baohong Zhang
  • Edmund J. Stellwag
  • Anthony Overton
  • Xiaoping Pan
Biologicals

Abstract

The economic, environmental, and human health impacts of the deepwater horizon (DWH) oil spill have been of significant concern in the general public and among scientists. This study employs parallel experiments to test the effects of crude oil from the DWH oil well, chemical dispersant Corexit 9500A, and dispersant-oil mixture on growth and reproduction in the model organism Caenorhabditis elegans. Both the crude oil and the dispersant significantly inhibited the reproduction of C. elegans. Dose-dependent inhibitions of hatched larvae production were observed in worms exposed to both crude oil and dispersant. Importantly, the chemical dispersant Corexit 9500A potentiated crude oil effects; dispersant-oil mixture induced more significant effects than oil or dispersant-alone exposures. While oil-alone exposure and dispersant-alone exposure have none to moderate inhibitory effects on hatched larvae production, respectively, the mixture of dispersant and oil induced much more significant inhibition of offspring production. The production of hatched larvae was almost completely inhibited by several high concentrations of the dispersant-oil mixture. This suggests a sensitive bioassay for future investigation of oil/dispersant impacts on organisms. We also investigated the effects of crude oil/dispersant exposure at the molecular level by measuring the expressions of 31 functional genes. Results showed that the dispersant and the dispersant-oil mixture induced aberrant expressions of 12 protein-coding genes (cat-4, trxr-2, sdhb-1, lev-8, lin-39, unc-115, prdx-3, sod-1, acr-16, ric-3, unc-68, and acr-8). These 12 genes are associated with a variety of biological processes, including egg-laying, oxidative stress, muscle contraction, and neurological functions. In summary, the toxicity potentiating effect of chemical dispersant must be taken into consideration in future crude oil cleanup applications.

Keywords

Deepwater horizon (DWH) oil spill C. elegans Toxicity Growth Reproduction Gene expression 

Notes

Acknowledgments

This work is partially supported by the grant from NSF Rapid Grant BIO IOS# 1058975) and partially by the East Carolina University New Faculty Startup Funds.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allan SE, Smith BW, Anderson KA (2012) Impact of the deepwater horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environ Sci Technol 46(4):2033–2039PubMedCrossRefGoogle Scholar
  2. Anderson GL, Boyd WA, Williams PL (2001) Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem 20(4):833–838PubMedGoogle Scholar
  3. Anderson SE, Franko J, Lukomska E, Meade BJ (2011) Potential immunotoxicological health effects following exposure to corexit 9500a during cleanup of the deepwater horizon oil spill. J Toxicol Environ Health A Curr Issue 74(21):1419–1430CrossRefGoogle Scholar
  4. Anonymous (1998) Genome sequence of the nematode C. elegans : a platform for investigating biology. Science 282(5396):2012–2018CrossRefGoogle Scholar
  5. Ayyadevara S, Tazearslan C, Bharill P, Alla R, Siegel E, Shmookler Reis RJ (2009) Caenorhabditis elegans PI3 K mutants reveal novel genes underlying exceptional stress resistance and lifespan. Aging Cell 8(6):706–725PubMedCrossRefGoogle Scholar
  6. Bany IA, Dong MQ, Koelle MR (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J Neurosci Off J Soc Neurosci 23(22):8060–8069Google Scholar
  7. Barron MG (2012) Ecological impacts of the deepwater horizon oil spill: implications for immunotoxicity. Toxicologic pathology (in press)Google Scholar
  8. Bispo A, Jourdain MJ, Jauzein M (1999) Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org Geochem 30(8):947–952CrossRefGoogle Scholar
  9. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedGoogle Scholar
  10. Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, Kersey P et al (2003) The gene ontology annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res 13(4):662–672PubMedCrossRefGoogle Scholar
  11. Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7(10):1096–1103PubMedCrossRefGoogle Scholar
  12. Clark SG, Chisholm AD, Horvitz HR (1993) Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74(1):43–55PubMedCrossRefGoogle Scholar
  13. Cole RD, Anderson GL, Williams PL (2004) The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol Appl Pharmacol 194:248–256PubMedCrossRefGoogle Scholar
  14. Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD et al (2004) The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 279(41):42476–42483PubMedCrossRefGoogle Scholar
  15. Cutter AD, Dey A, Murray RL (2009) Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 26(6):1199–1234PubMedCrossRefGoogle Scholar
  16. Darr D, Fridovich I (1995) Adaptation to oxidative stress in young, but not in mature or old, caenorhabditis elegans. Free Radic Biol Med 18(2):195–201PubMedCrossRefGoogle Scholar
  17. de Soysa TY, Ulrich A, Friedrich T, Pite D, Compton SL, Ok D et al (2012) Macondo crude oil from the deepwater horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol 10:40PubMedGoogle Scholar
  18. Dhawan R, Dusenbery DB, Williams PL (1999) Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health A 58(7):451–462PubMedCrossRefGoogle Scholar
  19. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P et al (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22(23):3236–3241PubMedCrossRefGoogle Scholar
  20. Eimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR et al (2007) Regulation of nicotinic receptor trafficking by the transmembrane golgi protein UNC-50. EMBO J 26(20):4313–4323PubMedCrossRefGoogle Scholar
  21. Einhorn LC, Gregerson KA, Oxford GS (1991) D2 dopamine receptor activation of potassium channels in identified rat lactotrophs—whole-cell and single-channel recording. J Neurosci 11(12):3727–3737PubMedGoogle Scholar
  22. Elmestikawy S, Glowinski J, Hamon M (1986) Presynaptic dopamine auto receptors control tyrosine-hydroxylase activation in depolarized striatal dopaminergic terminals. J Neurochem 46(1):12–22CrossRefGoogle Scholar
  23. Finch BE, Wooten KJ, Faust DR, Smith PN (2012) Embryotoxicity of mixtures of weathered crude oil collected from the Gulf of Mexico and corexit 9500 in mallard ducks (Anas platyrhynchos). Sci Total Environ 426:155–159PubMedCrossRefGoogle Scholar
  24. Fleming JT, Squire MD, Barnes TM, Tornoe C, Matsuda K, Ahnn J et al (1997) Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci Off J Soc Neurosci 17(15):5843–5857Google Scholar
  25. Frank CA, Baum PD, Garriga G (2003) HLH-14 is a C. elegans achaete-scute protein that promotes neurogenesis through asymmetric cell division. Development 130(26):6507–6518PubMedCrossRefGoogle Scholar
  26. Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agric Ecosys Environ 24(1–3):195–217CrossRefGoogle Scholar
  27. Frokjaer-Jensen C, Kindt KS, Kerr RA, Suzuki H, Melnik-Martinez K, Gerstbreih B et al (2006) Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensor neurons. J Neurobiol 66(10):1125–1139PubMedCrossRefGoogle Scholar
  28. Garcia LR, Sternberg PW (2003) Caenorhabditis elegans UNC-103 ERG-like potassium channel regulates contractile behaviors of sex muscles in males before and during mating. J Neurosci Off J Soc Neurosci 23(7):2696–2705Google Scholar
  29. Halevi S, McKay J, Palfreyman M, Yassin L, Eshel M, Jorgensen E et al (2002) The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J 21(5):1012–1020PubMedCrossRefGoogle Scholar
  30. Hardaker LA, Singer E, Kerr R, Zhou GT, Schafer WR (2001) Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. J Neurobiol 49(4):303–313PubMedCrossRefGoogle Scholar
  31. HHS (1995) Agency for toxic substances and disease registry. Toxicological profile for polycyclic aromatic hydrocarbons http://www.atsdr.cdc.gov/toxprofiles/tp69.pdf
  32. Höss S, Traunspurger WBA, Markert AMB, Zechmeister HG (2003) Chapter 15 Nematodes. Trace Metals and other Contaminants in the Environment. Elsevier, pp 529–554Google Scholar
  33. Huang J, Lemire BD (2009) Mutations in the C. elegans succinate dehydrogenase iron-sulfur subunit promote superoxide generation and premature aging. J Mol Biol 387(3):559–569PubMedCrossRefGoogle Scholar
  34. Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK et al (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Gene Dev 19(19):2278–2283PubMedCrossRefGoogle Scholar
  35. Kalis AK, Murphy MW, Zarkower D (2010) EGL-5/ABD-B plays an instructive role in male cell fate determination in the C. elegans somatic gonad. Dev Biol 344(2):827–835PubMedCrossRefGoogle Scholar
  36. Khanna N, Cressman CP 3rd, Tatara CP, Williams PL (1997) Tolerance of the nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media. Arch Environ Contam Toxicol 32(1):110–114PubMedCrossRefGoogle Scholar
  37. Kim J, Poole DS, Waggoner LE, Kempf A, Ramirez DS, Treschow PA et al (2001) Genes affecting the activity of nicotinic receptors involved in Caenorhabditis elegans egg-laying behavior. Genetics 157(4):1599–1610PubMedGoogle Scholar
  38. Liao VH, Yu CW (2005) Caenorhabditis elegans gcs-1 confers resistance to arsenic-induced oxidative stress. Biometals 18(5):519–528PubMedCrossRefGoogle Scholar
  39. Liu Q, Chen B, Yankova M, Morest DK, Maryon E, Hand AR et al (2005) Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci 25(29):6745–6754PubMedCrossRefGoogle Scholar
  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  41. Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR et al (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacol 190(3):269–319CrossRefGoogle Scholar
  42. Milinkovitch T, Lucas J, Le Floch S, Thomas-Guyon H, Lefrancois C (2012) Effect of dispersed crude oil exposure upon the aerobic metabolic scope in juvenile golden grey mullet (Liza aurata). Mar Pollut Bull 64(4):865–871PubMedCrossRefGoogle Scholar
  43. Moresco JJ, Koelle MR (2004) Activation of EGL-47, a Galpha(o)-coupled receptor, inhibits function of hermaphrodite-specific motor neurons to regulate Caenorhabditis elegans egg-laying behavior. J Neurosci 24(39):8522–8530PubMedCrossRefGoogle Scholar
  44. Murakami S, Johnson TE (2001) The OLD-1 positive regulator of longevity and stress resistance is under DAF-16 regulation in Caenorhabditis elegans. Curr Biol 11(19):1517–1523PubMedCrossRefGoogle Scholar
  45. Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33(4):161–168PubMedGoogle Scholar
  46. Nicholas HR, Hodgkin J (2009) The C. elegans Hox gene egl-5 is required for correct development of the hermaphrodite hindgut and for the response to rectal infection by Microbacterium nematophilum. Dev Biol 329(1):16–24PubMedCrossRefGoogle Scholar
  47. Reiner DJ, Newton EM, Tian H, Thomas JH (1999) Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM kinase II. Nature 402(6758):199–203PubMedCrossRefGoogle Scholar
  48. Riddle DL, Blumenthal T, Meyer BJ, Priess JR. 1997. Introduction to C. elegans. In: C elegans II, Riddle DL, Blumenthal T, Meyer BJ, Priess JR (Eds) Cold Spring Harbor: NYGoogle Scholar
  49. Roberts JR, Reynolds JS, Thompson JA, Zaccone EJ, Shimko MJ, Goldsmith WT et al (2011) Pulmonary effects after acute inhalation of oil dispersant (COREXIT EC9500A) in rats. J Toxicol Environ Health A 74(21):1381–1396PubMedCrossRefGoogle Scholar
  50. Roh J-Y, Park Y-K, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172PubMedCrossRefGoogle Scholar
  51. Samann J, Hegermann J, von Gromoff E, Eimer S, Baumeister R, Schmidt E (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284(24):16482–16491PubMedCrossRefGoogle Scholar
  52. Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P et al (2004) Dopamine modulates the plasticity of mechanosensor responses in Caenorhabditis elegans. EMBO J 23(2):473–482PubMedCrossRefGoogle Scholar
  53. Shibata Y, Branicky R, Landaverde IO, Hekimi S (2003) Redox regulation of germline and vulval development in Caenorhabditis elegans. Science 302(5651):1779–1782PubMedCrossRefGoogle Scholar
  54. Shteingauz A, Cohen E, Biala Y, Treinin M (2009) The BTB-MATH protein BATH-42 interacts with RIC-3 to regulate maturation of nicotinic acetylcholine receptors. J Cell Sci 122(Pt 6):807–812PubMedCrossRefGoogle Scholar
  55. Sochová I, Hofman J, Holoubek I (2007) Effects of seven organic pollutants on soil nematode Caenorhabditis elegans. Environ Int 33:798–804PubMedCrossRefGoogle Scholar
  56. Sriram K, Lin GX, Jefferson AM, Goldsmith WT, Jackson M, McKinney W et al (2011) Neurotoxicity following acute inhalation exposure to the oil dispersant corexit EC9500A. J Toxicol Environ Health A Curr Issue 74(21):1405–1418CrossRefGoogle Scholar
  57. Struckhoff EC, Lundquist EA (2003) The actin-binding protein UNC-115 is an effector of Rac signaling during axon pathfinding in C. elegans. Development 130(4):693–704PubMedCrossRefGoogle Scholar
  58. Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM 3rd, Richmond JE (2005) acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280(29):27013–27021PubMedCrossRefGoogle Scholar
  59. Towers PR, Edwards B, Richmond JE, Sattelle DB (2005) The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 93(1):1–9PubMedCrossRefGoogle Scholar
  60. Ura K, Kai T, Sakata S, Iguchi T, Arizono K (2002) Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J Health Sci 48(6):583–586CrossRefGoogle Scholar
  61. van der Linden AM, Simmer F, Cuppen E, Plasterk RH (2001) The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics 158(1):221–235PubMedGoogle Scholar
  62. Van Scoy AR, Anderson BS, Philips BM, Voorhees J, McCann M, De Haro H et al (2012) NMR-based characterization of the acute metabolic effects of weathered crude and dispersed oil in spawning top smelt and their embryos. Ecotoxicol Environ Saf 78:99–109PubMedCrossRefGoogle Scholar
  63. Wang D, Xing X (2008) Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci 20:1132–1137CrossRefGoogle Scholar
  64. Wise J, Wise JP Sr (2011) A review of the toxicity of chemical dispersants. Rev Environ Health 26(4):281–300PubMedCrossRefGoogle Scholar
  65. Wu J, Duggan A, Chalfie M (2001) Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. Genes Dev 15(6):789–802PubMedCrossRefGoogle Scholar
  66. Yanase S, Ishi N (1999) Cloning of the oxidative stress-responsive genes in Caenorhabditis elegans. J Radiat Res (Tokyo) 40(1):39–47CrossRefGoogle Scholar
  67. Yu H, Pretot RF, Burglin TR, Sternberg PW (2003) Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. Development 130(21):5217–5227PubMedCrossRefGoogle Scholar
  68. Zhang Y, Chen D, Smith MA, Zhang B, Pan X (2012) Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PLoS ONE 7(3):e31849PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yanqiong Zhang
    • 1
  • Dongliang Chen
    • 1
  • Adrien C. Ennis
    • 1
  • Joseph R. Polli
    • 1
  • Peng Xiao
    • 2
  • Baohong Zhang
    • 1
  • Edmund J. Stellwag
    • 1
  • Anthony Overton
    • 1
  • Xiaoping Pan
    • 1
  1. 1.Department of BiologyEast Carolina UniversityGreenvilleUSA
  2. 2.Department of MathematicsEast Carolina UniversityGreenvilleUSA

Personalised recommendations