Archives of Toxicology

, Volume 87, Issue 2, pp 227–247 | Cite as

Cellular and molecular mechanisms of hepatocellular carcinoma: an update

  • Rajagopal N. Aravalli
  • Erik N. K. Cressman
  • Clifford J. Steer
Review Article


Hepatocellular carcinoma (HCC) is the most common primary malignant tumor that accounts for ~80 % of all liver cancer cases worldwide. It is a multifactorial disease caused by a variety of risk factors and often develops in the background of underlying cirrhosis. A number of cellular phenomena, such as tumor microenvironment, inflammation, oxidative stress, and hypoxia act in concert with various molecular events to facilitate tumor initiation, progression, and metastasis. The emergence of microRNAs and molecular-targeted therapies adds a new dimension in our efforts to combat this deadly disease. Intense research in this multitude of areas has led to significant progress in our understanding of cellular processes and molecular mechanisms that occur during multistage events that lead to hepatocarcinogenesis. In this review, we discuss the current knowledge of HCC, focusing mainly on advances that have occurred during the past 5 years and on the development of novel therapeutics for liver cancer.


Hepatocellular carcinoma Cancer stem cell Liver cancer Targeted therapy microRNA 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abel S, De Kock M, van Schalkwyk DJ, Swanevelder S, Kew MC, Gelderblom WC (2009) Altered lipid profile, oxidative status and hepatitis B virus interactions in human hepatocellular carcinoma. Prostaglandins Leukot Essent Fatty Acids 81(5–6):391–399PubMedCrossRefGoogle Scholar
  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988PubMedCrossRefGoogle Scholar
  3. Anson M, Crain-Denoyelle AM, Baud V, Chereau F, Gougelet A, Terris B, Yamagoe S, Colnot S, Viguier M, Perret C, Couty JP (2012) Oncogenic β-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. J Clin Invest 122(2):586–599PubMedCrossRefGoogle Scholar
  4. Aravalli RN, Cressman EN (2009) Molecular signaling in hepatocelluar carcinoma. Cancer Chemother Rev 4:157–164Google Scholar
  5. Aravalli RN, Steer CJ, Cressman EN (2008) Molecular mechanisms of hepatocellular carcinoma. Hepatology 48(6):1049–1053CrossRefGoogle Scholar
  6. Bader AG (2012) miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 3:120PubMedGoogle Scholar
  7. Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K (2009) MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 284(46):32015–32027PubMedCrossRefGoogle Scholar
  8. Bala S, Marcos M, Szabo G (2009) Emerging role of microRNAs in liver diseases. World J Gastroenterol 15(45):5633–5640PubMedCrossRefGoogle Scholar
  9. Barajas M, Mazzolini G, Genové G, Bilbao R, Narvaiza I, Schmitz V, Sangro B, Melero I, Qian C, Prieto J (2001) Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology 33(1):52–61PubMedCrossRefGoogle Scholar
  10. Benetti A, Berenzi A, Gambarotti M, Garrafa E, Gelati M, Dessy E, Portolani N, Piardi T, Giulini SM, Caruso A, Invernici G, Parati EA, Nicosia R, Alessandri G (2008) Transforming growth factor-β1 and CD105 promote the migration of hepatocellular carcinoma–derived endothelium. Cancer Res 68(20):8626–8634PubMedCrossRefGoogle Scholar
  11. Bergamini C, Sgarra C, Trerotoli P, Lupo L, Azzariti A, Antonaci S, Giannelli G (2007) Laminin-5 stimulates hepatocellular carcinoma growth through a different function of α6β4 and α3β1 integrins. Hepatology 46(6):1801–1809PubMedCrossRefGoogle Scholar
  12. Bochud PY, Bibert S, Kutalik Z, Patin E, Guergnon J, Nalpas B, Goossens N, Kuske L, Müllhaupt B, Gerlach T, Heim MH, Moradpour D, Cerny A, Malinverni R, Regenass S, Dollenmaier G, Hirsch H, Martinetti G, Gorgiewski M, Bourlière M, Poynard T, Theodorou I, Abel L, Pol S, Dufour JF, Negro F (2012) IL28B alleles associated with poor hepatitis C virus (HCV) clearance protect against inflammation and fibrosis in patients infected with non-1 HCV genotypes. Hepatology 55(2):384–394PubMedCrossRefGoogle Scholar
  13. Bortolami M, Venturi C, Giacomelli L, Scalerta R, Bacchetti S, Marino F, Floreani A, Lise M, Naccarato R, Farinati F (2002) Cytokine, infiltrating macrophage and T cell-mediated response to development of primary and secondary human liver cancer. Dig Liver Dis 34(11):794–801PubMedCrossRefGoogle Scholar
  14. Braconi C, Henry JC, Kogure T, Schmittgen T, Patel T (2011) The role of microRNAs in human liver cancers. Semin Oncol 38(6):752–763PubMedCrossRefGoogle Scholar
  15. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, Kammula US, Chen Y, Qin LX, Tang ZY, Wang XW (2006) Prediction of venous metastases, recurrence and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10(2):99–111PubMedCrossRefGoogle Scholar
  16. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, Tang ZY, Wang XW (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47(3):897–907PubMedCrossRefGoogle Scholar
  17. Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, Sham PC, Lam BY, Ferguson MD, Tokiwa G, Smith R, Leeson B, Beard R, Lamb JR, Lim L, Mao M, Dai H, Luk JM (2010) microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol 6:402PubMedCrossRefGoogle Scholar
  18. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866PubMedCrossRefGoogle Scholar
  19. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004PubMedCrossRefGoogle Scholar
  20. Calvisi D, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS (2006) Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130(4):1117–1128PubMedCrossRefGoogle Scholar
  21. Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM, Fausto N (2005) Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA 102(9):3389–3394PubMedCrossRefGoogle Scholar
  22. Carr BI, Wang Z, Wang M, Cavallini A, D’Alessandro R, Refolo MG (2011) c-Met-Akt pathway-mediated enhancement of inhibitory c-Raf phosphorylation is involved in vitamin K1 and sorafenib synergy on HCC growth inhibition. Cancer Biol Ther 12(6):531–538PubMedCrossRefGoogle Scholar
  23. Castoldi M, Vujic Spasic M, Altamura S, Elmén J, Lindow M, Kiss J, Stolte J, Sparla R, D’Alessandro LA, Klingmüller U, Fleming RE, Longerich T, Gröne HJ, Benes V, Kauppinen S, Hentze MW, Muckenthaler MU (2011) The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest 121(4):1386–1396PubMedCrossRefGoogle Scholar
  24. Chen XM (2009) MicroRNA signatures in liver diseases. World J Gastroenterol 15(14):1665–1672PubMedCrossRefGoogle Scholar
  25. Chen L, Chan TH, Yuan YF, Hu L, Huang J, Ma S, Wang J, Dong SS, Tang KH, Xie D, Li Y, Guan XY (2010a) CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Invest 120(4):1178–1191PubMedCrossRefGoogle Scholar
  26. Chen PJ, Furuse J, Han KH, Hsu C, Lim HY, Moon H, Qin S, Ye SL, Yeoh EM, Yeo W (2010b) Issues and controversies of hepatocellular carcinoma-targeted therapy clinical trials in Asia: experts’ opinion. Liver Int 30(10):1427–1438PubMedCrossRefGoogle Scholar
  27. Chen KJ, Zhou L, Xie HY, Ahmed TE, Feng XW, Zheng SS (2012) Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection. Med Oncol 29(3):1817–1826Google Scholar
  28. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48(6):1810–1820PubMedCrossRefGoogle Scholar
  29. Chew V, Chen J, Lee D, Loh E, Lee J, Lim KH, Weber A, Slankamenac K, Poon RT, Yang H, Ooi LL, Toh HC, Heikenwalder M, Ng IO, Nardin A, Abastado JP (2012) Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 61(3):427–438PubMedCrossRefGoogle Scholar
  30. Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44(1):240–251PubMedCrossRefGoogle Scholar
  31. Chuma M, Hige S, Nakanishi M, Ogawa K, Natsuizaka M, Yamamoto Y, Asaka M (2008) 8-Hydroxy-2’-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 23(9):1431–1436PubMedCrossRefGoogle Scholar
  32. Cogliati B, Aloia TP, Bosch RV, Alves VA, Hernandez-Blazquez FJ, Dagli ML (2010) Identification of hepatic stem/progenitor cells in canine hepatocellular and cholangiocellular carcinoma. Vet Comp Oncol 8(2):112–121PubMedCrossRefGoogle Scholar
  33. Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, Perret C (2005) Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA 101(49):17216–17221CrossRefGoogle Scholar
  34. Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL, Rogler LE, Zavolan M, Tuschl T, Rogler CE (2008) Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol 173(3):856–864PubMedCrossRefGoogle Scholar
  35. Copple BL (2010) Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia inducible factor- and transforming growth factor-β-dependent Mechanisms. Liver Int 30(5):669–682PubMedCrossRefGoogle Scholar
  36. Croker BA, Kiu H, Nicholson SE (2008) SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol 19(4):412–422Google Scholar
  37. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu CG, Volinia S, Croce CM, Schmittgen TD, Ghoshal K, Jacob ST (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68(13):5049–5058PubMedCrossRefGoogle Scholar
  38. Davies C, Tournier C (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Transact 40(1):85–89CrossRefGoogle Scholar
  39. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C (1998) Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95(15):8847–8851CrossRefGoogle Scholar
  40. Del Barco Barrantes I, Nebreda AR (2012) Roles of p38 MAPKs in invasion and metastasis. Biochem Soc Transact 40(1):79–84CrossRefGoogle Scholar
  41. Ding W, You H, Dang H, LeBlanc F, Galicia V, Lu SC, Stiles B, Rountree CB (2010) Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology 52(3):945–953PubMedCrossRefGoogle Scholar
  42. Du H, Yang W, Chen L, Shen B, Peng C, Li H, Ann DK, Yen Y, Qiu W (2012) Emerging role of autophagy during ischemia-hypoxia and reperfusion in hepatocellular carcinoma. Int J Oncol 40(6):2049–2057PubMedGoogle Scholar
  43. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149(3):515–524PubMedCrossRefGoogle Scholar
  44. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264–1273PubMedCrossRefGoogle Scholar
  45. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576PubMedCrossRefGoogle Scholar
  46. Elsharkawy AM, Mann DA (2007) Nuclear factor-κB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46(2):590–597PubMedCrossRefGoogle Scholar
  47. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):89–98CrossRefGoogle Scholar
  48. Fallot G, Neuveut C, Buendia MA (2012) Diverse roles of hepatitis B virus in liver cancer. Curr Opin Virol 2(4):467–473Google Scholar
  49. Fan CG, Wang CM, Tian C, Wang Y, Li L, Sun WS, Li RF, Liu YG (2011) miR-122 inhibits viral replication and cell proliferation in hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol Rep 26(5):1281–1286PubMedGoogle Scholar
  50. Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6(9):674–687PubMedCrossRefGoogle Scholar
  51. Fletcher LM, Powell LW (2003) Hemochromatosis and alcoholic liver disease. Alcohol 30(2):131–136PubMedCrossRefGoogle Scholar
  52. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L, Negrini M (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27(43):5651–5661PubMedCrossRefGoogle Scholar
  53. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134(6):1655–1669PubMedCrossRefGoogle Scholar
  54. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y, Fu YX, Wang FS (2007a) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132(7):2328–2339PubMedCrossRefGoogle Scholar
  55. Fu Y, Fang Z, Liang Y, Zhu X, Prins P, Li Z, Wang L, Sun L, Jin J, Yang Y, Zha X (2007b) Overexpression of integrin beta1 inhibits proliferation of hepatocellular carcinoma cell SMMC-7721 through preventing Skp2-dependent degradation of p27 via PI3K pathway. J Cell Biochem 102(3):704–718PubMedCrossRefGoogle Scholar
  56. Giannelli G, Fransvea E, Bergamini C, Marinosci F, Antonaci S (2003) Laminin-5 chains are expressed differentially in metastatic and nonmetastatic hepatocellular carcinoma. Clin Cancer Res 9(10 Pt 1):3684–3691PubMedGoogle Scholar
  57. Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129(5):1375–1383PubMedCrossRefGoogle Scholar
  58. Giera S, Braeuning A, Köhle C, Bursch W, Metzger U, Buchmann A, Schwarz M (2010) Wnt/β-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol Sci 115(1):22–33PubMedCrossRefGoogle Scholar
  59. Goodrich DW (2006) The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene 25(38):5233–5243PubMedCrossRefGoogle Scholar
  60. Gouas DA, Shi H, Hautefeuille AH, Ortiz-Cuaran SL, Legros PC, Szymanska KJ, Galy O, Egevad LA, Abedi-Ardekani B, Wiman KG, Hantz O, Caron de Fromentel C, Chemin IA, Hainaut PL (2010) Effects of the TP53 p.R249S mutant on proliferation and clonogenic properties in human hepatocellular carcinoma cell lines: interaction with hepatitis B virus X protein. Carcinogenesis 31(8):1475–1482PubMedCrossRefGoogle Scholar
  61. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi GL, Croce CM, Bolondi L, Negrini M (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67(13):6092–6099PubMedCrossRefGoogle Scholar
  62. Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12(6A):2189–2204PubMedCrossRefGoogle Scholar
  63. Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M (2009) MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 15(16):5073–5081PubMedCrossRefGoogle Scholar
  64. Grisham JW (1997) Interspecies comparison of liver carcinogenesis: implications for cancer risk assessment. Carcinogenesis 18(1):59–81PubMedCrossRefGoogle Scholar
  65. Gu FM, Li QL, Gao Q, Jiang JH, Huang XY, Pan JF, Fan J, Zhou J (2011) Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3. World J Gastroenterol 17(34):3922–3932PubMedCrossRefGoogle Scholar
  66. Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M (2006) Zonal gene expression in murine liver: lessons from tumors. Hepatology 43(3):407–414PubMedCrossRefGoogle Scholar
  67. Hamaguchi T, Iizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, Iida M, Tokuhisa Y, Sakamoto K, Takashima M, Tamesa T, Oka M (2008) Glycolysis module activated by hypoxia-inducible factor 1α is related to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol 33(4):725–731PubMedGoogle Scholar
  68. Han YP, Zhou L, Wang J, Xiong S, Garner WL, French SW, Tsukamoto H (2004) Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem 279(6):4820–4828PubMedCrossRefGoogle Scholar
  69. Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14(19):2393–2409PubMedCrossRefGoogle Scholar
  70. Harrison DA (2012) The Jak/STAT pathway. Cold Spring Harb Perspect Biol 4(3):pii: a011205Google Scholar
  71. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  72. Henry JC, Azevedo-Pouly AC, Schmittgen TD (2011) MicroRNA replacement therapy for cancer. Pharm Res 28(12):3030–3042PubMedCrossRefGoogle Scholar
  73. Heppner GH, Miller FR (1998) The cellular basis of tumor progression. Int Rev Cytol 177:1–56PubMedCrossRefGoogle Scholar
  74. Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N, Hayashi N (2010) The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 52(4):1310–1321PubMedCrossRefGoogle Scholar
  75. Hiroishi K, Eguchi J, Baba T, Shimazaki T, Ishii S, Hiraide A, Sakaki M, Doi H, Uozumi S, Omori R, Matsumura T, Yanagawa T, Ito T, Imawari M (2010) Strong CD8+ T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 45(4):451–458PubMedCrossRefGoogle Scholar
  76. Hossain MM, Hosono-Fukao T, Tang R, Sugaya N, van Kuppevelt TH, Jenniskens GJ, Kimata K, Rosen SD, Uchimura K (2010) Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88. Glycobiology 20(2):175–186PubMedCrossRefGoogle Scholar
  77. Huang S, He X (2011) The role of microRNAs in liver cancer progression. Br J Cancer 104(2):235–240PubMedCrossRefGoogle Scholar
  78. Huang X, Yu C, Jin C, Kobayashi M, Bowles CA, Wang F, McKeehan WL (2006) Ectopic activity of fibroblast growth factor receptor 1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and vascular endothelial growth factor-induced angiogenesis. Cancer Res 66(3):1481–1490PubMedCrossRefGoogle Scholar
  79. Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, Yao X, Pan Z, Zhang P, Li J, Wan D, Gu J (2008a) Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer 123(4):972–978PubMedCrossRefGoogle Scholar
  80. Huang YS, Dai Y, Yu XF, Bao SY, Yin YB, Tang M, Hu CX (2008b) Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol 23(1):87–94PubMedCrossRefGoogle Scholar
  81. Hussain SP, Raja K, Amstad PA, Sawyer M, Trudel LJ, Wogan GN, Hofseth LJ, Shields PG, Billiar TR, Trautwein C, Hohler T, Galle PR, Phillips DH, Markin R, Marrogi AJ, Harris CC (2000) Increased p53 mutation load in nontumorous human liver of wilson disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci USA 97(23):12770–12775PubMedCrossRefGoogle Scholar
  82. Iglesias BV, Centeno G, Pascuccelli H, Ward F, Peters MG, Filmus J, Puricelli L, de Kier Joffé EB (2008) Expression pattern of glypican-3 (GPC3) during human embryonic and fetal development. Histol Histopathol 23(11):1333–1340PubMedGoogle Scholar
  83. Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M (2008) Cancer stem cells and chemoradiation resistance. Cancer Sci 99(10):1871–1877PubMedCrossRefGoogle Scholar
  84. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M (2010) Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101(2):293–299PubMedCrossRefGoogle Scholar
  85. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH, Qin LX, Yang W, Wang HY, Tang ZY, Croce CM, Wang XW (2009) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50(2):472–480PubMedCrossRefGoogle Scholar
  86. Ji J, Zhao L, Budhu A, Forgues M, Jia HL, Qin LX, Ye QH, Yu J, Shi X, Tang ZY, Wang XW (2010) Let-7 g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol 52(5):690–697PubMedCrossRefGoogle Scholar
  87. Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, Roberts LR, Schmittgen TD (2008) Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 14(2):419–427PubMedCrossRefGoogle Scholar
  88. Jopling C (2012) Liver-specific microRNA-122: biogenesis and function. RNA Biol 9(2):137–142PubMedCrossRefGoogle Scholar
  89. Joshita S, Umemura T, Katsuyama Y, Ichikawa Y, Kimura T, Morita S, Kamijo A, Komatsu M, Ichijo T, Matsumoto A, Yoshizawa K, Kamijo N, Ota M, Tanaka E (2012) Association of IL28B gene polymorphism with development of hepatocellular carcinoma in Japanese patients with chronic hepatitis C virus infection. Hum Immunol 73(3):298–300PubMedCrossRefGoogle Scholar
  90. Kamohara Y, Haraguchi N, Mimori K, Tanaka F, Inoue H, Mori M, Kanematsu T (2008) The search for cancer stem cells in hepatocellular carcinoma. Surgery 144(2):119–124PubMedCrossRefGoogle Scholar
  91. Kikkawa Y, Sudo R, Kon J, Mizuguchi T, Nomizu M, Hirata K, Mitaka T (2008) Laminin α5 mediates ectopic adhesion of hepatocellular carcinoma through integrins and/or Lutheran/basal cell adhesion molecule. Exp Cell Res 314(14):2579–2590PubMedCrossRefGoogle Scholar
  92. Kim J, Hong SJ, Park JY, Park JH, Yu YS, Park SY, Lim EK, Choi KY, Lee EK, Paik SS, Lee KG, Wang HJ, Do IG, Joh JW, Kim DS (2010) Epithelial-mesenchymal transition gene signature to predict clinical outcome of hepatocellular carcinoma. Cancer Sci 101(6):1521–1528PubMedCrossRefGoogle Scholar
  93. Kitaoka S, Shiota G, Kawasaki H (2009) Serum levels of interleukin-10, interleukin-12 and soluble interleukin-2 receptor in chronic liver disease type C. Hepatogastroenterology 50(53):1569–1574Google Scholar
  94. Körner C, Riesner K, Krämer B, Eisenhardt M, Glässner A, Wolter F, Berg T, Müller T, Sauerbruch T, Nattermann J, Spengler U, Nischalke HD (2012) TRAIL receptor I (DR4) polymorphisms C626G and A683C are associated with an increased risk for hepatocellular carcinoma (HCC) in HCV-infected patients. BMC Cancer 12:85PubMedCrossRefGoogle Scholar
  95. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017PubMedCrossRefGoogle Scholar
  96. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157PubMedCrossRefGoogle Scholar
  97. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99(3):671–678PubMedCrossRefGoogle Scholar
  98. Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, Zucman-Rossi J (2008) MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 47(6):1955–1963PubMedCrossRefGoogle Scholar
  99. Lai JP, Sandhu DS, Yu C, Han T, Moser CD, Jackson KK, Guerrero RB, Aderca I, Isomoto H, Garrity-Park MM, Zou H, Shire AM, Nagorney DM, Sanderson SO, Adjei AA, Lee JS, Thorgeirsson SS, Roberts LR (2008) Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 47(4):1211–1222PubMedCrossRefGoogle Scholar
  100. Lang K, Danchenko N, Gondek K, Shah S, Thompson D (2009) The burden of illness associated with hepatocellular carcinoma in the United States. J Hepatol 50(1):89–99PubMedCrossRefGoogle Scholar
  101. Law PT, Wong N (2011) Emerging roles of microRNA in the intracellular signaling networks of hepatocellular carcinoma. J Gastroenterol Hepatol 26(3):437–449PubMedCrossRefGoogle Scholar
  102. Lee HC, Kim M, Wands JR (2006a) Wnt/Frizzled signaling in hepatocellular carcinoma. Front Biosci 11:1901–1915PubMedCrossRefGoogle Scholar
  103. Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, Wong YC, Guan XY, Man K, Chau KL, Fan ST (2006b) Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 12(18):5369–5376PubMedCrossRefGoogle Scholar
  104. Lee WC, Wu TJ, Chou HS, Yu MC, Hsu PY, Hsu HY, Wang CC (2012) The impact of CD4+CD25+ T cells in the tumor microenvironment of hepatocellular carcinoma. Surgery 151(2):213–222PubMedCrossRefGoogle Scholar
  105. Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, Travali S, Spandidos DA, Libra M (2012) The tumor microenvironment in hepatocellular carcinoma (review). Int J Oncol 40(6):1733–1747PubMedGoogle Scholar
  106. Li W, Xie L, He X, Li J, Tu K, Wei L, Wu J, Guo Y, Ma X, Zhang P, Pan Z, Hu X, Zhao Y, Xie H, Jiang G, Chen T, Wang J, Zheng S, Cheng J, Wan D, Yang S, Li Y, Gu J (2008) Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer 123(7):1616–1622PubMedCrossRefGoogle Scholar
  107. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by downregulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275(1):44–53PubMedCrossRefGoogle Scholar
  108. Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS, Xu YF (2011) Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 54(3):497–505PubMedCrossRefGoogle Scholar
  109. Liao Y, Tang ZY, Ye SL, Liu KD, Sun FX, Huang Z (2000) Modulation of apoptosis, tumorigenesity and metastatic potential with antisense H-ras oligodeoxynucleotides in a high metastatic tumor model of hepatoma: LCI-D20. Hepatogastroenterology 47(32):365–370PubMedGoogle Scholar
  110. Libbrecht L, Roskams T (2002) Hepatic progenitor cells in human liver diseases. Semin Cell Dev Biol 13(6):389–396PubMedCrossRefGoogle Scholar
  111. Lin A, Schildknecht A, Nguyen LT, Ohashi PS (2010) Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 127(2):77–84PubMedCrossRefGoogle Scholar
  112. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66(24):11851–11858PubMedCrossRefGoogle Scholar
  113. Liu CJ, Lee PH, Lin DY, Wu CC, Jeng LB, Lin PW, Mok KT, Lee WC, Yeh HZ, Ho MC, Yang SS, Lee CC, Yu MC, Hu RH, Peng CY, Lai KL, Chang SS, Chen PJ (2009) Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol 50(5):958–968PubMedCrossRefGoogle Scholar
  114. Liu L, Zhu XD, Wang WQ, Shen Y, Qin Y, Ren ZG, Sun HC, Tang ZY (2010) Activation of β-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clin Cancer Res 16(10):2740–2750PubMedCrossRefGoogle Scholar
  115. Liu J, Ma Q, Zhang M, Wang X, Zhang D, Li W, Wang F, Wu E (2012) Alterations of TP53 are associated with a poor outcome for patients with hepatocellular carcinoma: Evidence from a systematic review and meta-analysis. Eur J Cancer. doi: 10.1016/j.ejca.2012.03.001
  116. Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48(4):1312–1327PubMedCrossRefGoogle Scholar
  117. Luedde T, Schwabe RF (2011) NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8(2):108–118CrossRefGoogle Scholar
  118. Luk JM, Lam CT, Siu AF, Lam BY, Ng IO, Hu MY, Che CM, Fan ST (2006) Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6(3):1049–1057PubMedCrossRefGoogle Scholar
  119. Lyons JF, Wilhelm S, Hibner B, Bollag G (2001) Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 8(3):219–225PubMedCrossRefGoogle Scholar
  120. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132(7):2542–2556PubMedCrossRefGoogle Scholar
  121. Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, Guan XY (2008a) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 6(7):1146–1153PubMedCrossRefGoogle Scholar
  122. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY (2008b) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27(12):1749–1758PubMedCrossRefGoogle Scholar
  123. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121(7):977–990PubMedCrossRefGoogle Scholar
  124. Maegdefrau U, Amann T, Winklmeier A, Braig S, Schubert T, Weiss TS, Schardt K, Warnecke C, Hellerbrand C, Bosserhoff AK (2009) Bone morphogenetic protein 4 is induced in hepatocellular carcinoma by hypoxia and promotes tumour progression. J Pathol 218(4):520–529PubMedCrossRefGoogle Scholar
  125. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70(5):325–330PubMedCrossRefGoogle Scholar
  126. Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK (2011) Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol 41(9):2522–2525PubMedCrossRefGoogle Scholar
  127. Marabita F, Aghemo A, De Nicola S, Rumi MG, Cheroni C, Scavelli R, Crimi M, Soffredini R, Abrignani S, De Francesco R, Colombo M (2011) Genetic variation in the interleukin-28B gene is not associated with fibrosis progression in patients with chronic hepatitis C and known date of infection. Hepatology 54(4):1127–1134PubMedCrossRefGoogle Scholar
  128. Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P (2011) Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 9:171PubMedCrossRefGoogle Scholar
  129. Marrero JA, Kudo M, Bronowicki JP (2010) The challenge of prognosis and staging for hepatocellular carcinoma. Oncologist 15(suppl 4):23–33PubMedCrossRefGoogle Scholar
  130. Mathai AM, Kapadia MJ, Alexander J, Kernochan LE, Swanson PE, Yeh MM (2012) Role of Foxp3-positive Tumor-infiltrating Lymphocytes in the Histologic Features and Clinical Outcomes of Hepatocellular Carcinoma. Am J Surg Pathol 36(7):980–986PubMedCrossRefGoogle Scholar
  131. Matsuo N, Shiraha H, Fujikawa T, Takaoka N, Ueda N, Tanaka S, Nishina S, Nakanishi Y, Uemura M, Takaki A, Nakamura S, Kobayashi Y, Nouso K, Yagi T, Yamamoto K (2009) Twist expression promotes migration and invasion in hepatocellular carcinoma. BMC Cancer 9:240PubMedCrossRefGoogle Scholar
  132. Matsushima-Nishiwaki R, Adachi S, Yoshioka T, Yasuda E, Yamagishi Y, Matsuura J, Muko M, Iwamura R, Noda T, Toyoda H, Kaneoka Y, Okano Y, Kumada T, Kozawa O (2011) Suppression by heat shock protein 20 of hepatocellular carcinoma cell proliferation via inhibition of the mitogen-activated protein kinases and AKT pathways. J Cell Biochem 112(11):3430–3439PubMedCrossRefGoogle Scholar
  133. Melo SA, Esteller M (2011) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585(13):2087–2099PubMedCrossRefGoogle Scholar
  134. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658PubMedCrossRefGoogle Scholar
  135. Merle P, Kim M, Herrmann M, Gupte A, Lefrançois L, Califano S, Trépo C, Tanaka S, Vitvitski L, de la Monte S, Wands JR (2005) Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. J Hepatol 43(5):854–862PubMedCrossRefGoogle Scholar
  136. Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924–935PubMedCrossRefGoogle Scholar
  137. Miner JH (2008) Laminins and their roles in mammals. Microsc Res Tech 71(5):349–356PubMedCrossRefGoogle Scholar
  138. Mizuno H, Ogura M, Saito Y, Sekine W, Sano R, Gotou T, Oku T, Itoh S, Katabami K, Tsuji T (2008) Changes in adhesive and migratory characteristics of hepatocellular carcinoma (HCC) cells induced by expression of α3β1 integrin. Biochim Biophys Acta 1780:564–570PubMedCrossRefGoogle Scholar
  139. Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, Chung CH, Lu B (2011) Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol 2011:941876PubMedCrossRefGoogle Scholar
  140. Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 71(14):5728–5739CrossRefGoogle Scholar
  141. Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, Walter J, Karnatz N, Lamszus K, Rogiers X, Broering DC (2007) Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171(5):1608–1618PubMedCrossRefGoogle Scholar
  142. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537–2545PubMedCrossRefGoogle Scholar
  143. Murata K, Suzuki H, Okano H, Oyamada T, Yasuda Y, Sakamoto A (2010) Hypoxia-induced des-γ-carboxy prothrombin production in hepatocellular carcinoma. Int J Oncol 36(1):161–170PubMedGoogle Scholar
  144. Nagoev BS, Abidov MT, Ivanova MR (2002) LPO and free-radical oxidation parameters in patients with acute viral hepatitis. Bull Exp Biol Med 134(6):557–558PubMedCrossRefGoogle Scholar
  145. Nakagawa H, Maeda S, Yoshida H, Tateishi R, Masuzaki R, Ohki T, Hayakawa Y, Kinoshita H, Yamakado M, Kato N, Shiina S, Omata M (2009) Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: an analysis based on gender differences. Int J Cancer 125(10):2264–2269PubMedCrossRefGoogle Scholar
  146. Nakazaki H (1992) Preoperative and postoperative cytokines in patients with cancer. Cancer 70(3):709–713PubMedCrossRefGoogle Scholar
  147. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317(5834):121–124PubMedCrossRefGoogle Scholar
  148. Negrini M, Gramantieri L, Sabbioni S, Croce CM (2011) microRNA involvement in hepatocellular carcinoma. Anticancer Agents Med Chem 11(6):500–521PubMedCrossRefGoogle Scholar
  149. Niu RF, Zhang L, Xi GM, Wei XY, Yang Y, Shi YR, Hao XS (2007) Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res 26(3):385–394PubMedGoogle Scholar
  150. Nkabyo YS, Ziegler TR, Gu LH, Watson WH, Jones DP (2002) Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol 283(6):G1352–G1359PubMedGoogle Scholar
  151. Nordenstedt H, White DL, El-Serag HB (2010) The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis 42(Suppl 3):S206–S214PubMedCrossRefGoogle Scholar
  152. O’Beirne J, Farzaneh F, Harrison PM (2010) Generation of functional CD8+ T cells by human dendritic cells expressing glypican-3 epitopes. J Exp Clin Cancer Res 29(1):48PubMedCrossRefGoogle Scholar
  153. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843PubMedCrossRefGoogle Scholar
  154. Padgett KA, Lan RY, Leung PC, Lleo A, Dawson K, Pfeiff J, Mao TK, Coppel RL, Ansari AA, Gershwin ME (2009) Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun 32(3–4):246–253PubMedCrossRefGoogle Scholar
  155. Pang RW, Poon RT (2007) From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology 72(Suppl 1):30–44PubMedCrossRefGoogle Scholar
  156. Pardee AD, Butterfield LH (2012) Immunotherapy of hepatocellular carcinoma: unique challenges and clinical opportunities. Oncoimmunology 1(1):48–55PubMedCrossRefGoogle Scholar
  157. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M (2007) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140(2):197–208CrossRefGoogle Scholar
  158. Piao LS, Hur W, Kim TK, Hong SW, Kim SW, Choi JE, Sung PS, Song MJ, Lee BC, Hwang D, Yoon SK (2012) CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett 315(2):129–137PubMedCrossRefGoogle Scholar
  159. Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331PubMedCrossRefGoogle Scholar
  160. Pimienta G, Pascual J (2007) Canonical and alternative MAPK signaling. Cell Cycle 6(21):2628–2632PubMedCrossRefGoogle Scholar
  161. Pleschka S (2008) RNA viruses and the mitogenic Raf/MEK/ERK signal transduction cascade. Biol Chem 389(10):1273–1282PubMedCrossRefGoogle Scholar
  162. Pogribny IP, Starlard-Davenport A, Tryndyak VP, Han T, Ross SA, Rusyn I, Beland FA (2010) Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab Invest 90(10):1437–1446PubMedCrossRefGoogle Scholar
  163. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5):pii: a008052Google Scholar
  164. Ramaiah SK, Rittling S (2008) Pathophysiological role of osteopontin in hepatic inflammation, toxicity, and cancer. Toxicol Sci 103(1):4–13PubMedCrossRefGoogle Scholar
  165. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRefGoogle Scholar
  166. Rinaldi M, Iurescia S, Fioretti D, Ponzetto A, Carloni G (2009) Strategies for successful vaccination against hepatocellular carcinoma. Int J Immunopathol Pharmacol 22(2):269–277PubMedGoogle Scholar
  167. Röring M, Brummer T (2012) Aberrant B-Raf signaling in human cancer—10 years from bench to bedside. Crit Rev Oncog 17(1):97–121PubMedCrossRefGoogle Scholar
  168. Roskams T, Kojiro M (2010) Pathology of early hepatocellular carcinoma: conventional and molecular diagnosis. Semin Liver Dis 31(1):17–25CrossRefGoogle Scholar
  169. Saddic LA, Wirt S, Vogel H, Felsher DW, Sage J (2011) Functional interactions between retinoblastoma and c-MYC in a mouse model of hepatocellular carcinoma. PLoS ONE 6(5):e19758PubMedCrossRefGoogle Scholar
  170. Salnikov AV, Kusumawidjaja G, Rausch V, Bruns H, Gross W, Khamidjanov A, Ryschich E, Gebhard MM, Moldenhauer G, Büchler MW, Schemmer P, Herr I (2009) Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter. Cancer Lett 275(2):185–193PubMedCrossRefGoogle Scholar
  171. Schiffer EHC, Cacheux W, Wendum D, Desbois-Mouthon C, Rey C, Clergue F, Poupon R, Barbu V, Rosmorduc O (2005) Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology 41(2):307–314PubMedCrossRefGoogle Scholar
  172. Schrader J, Iredale JP (2011) The inflammatory microenvironment of HCC - the plot becomes complex. J Hepatol 54(5):853–855PubMedCrossRefGoogle Scholar
  173. Schulze-Bergkamen H, Fleischer B, Schuchmann M, Weber A, Weinmann A, Krammer PH, Galle PR (2006) Suppression of Mcl-1 via RNA interference sensitizes human hepatocellular carcinoma cells towards apoptosis induction. BMC Cancer 6:232PubMedCrossRefGoogle Scholar
  174. Severi T, van Malenstein H, Verslype C, van Pelt JF (2010) Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacol Sin 31(11):1409–1420PubMedCrossRefGoogle Scholar
  175. Shi GM, Xu Y, Fan J, Zhou J, Yang XR, Qiu SJ, Liao Y, Wu WZ, Ji Y, Ke AW, Ding ZB, He YZ, Wu B, Yang GH, Qin WZ, Zhang W, Zhu J, Min ZH, Wu ZQ (2008) Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials. J Cancer Res Clin Oncol 134(11):1155–1163PubMedCrossRefGoogle Scholar
  176. Shimizu S, Takehara T, Hikita H, Kodama T, Tsunematsu H, Miyagi T, Hosui A, Ishida H, Tatsumi T, Kanto T, Hiramatsu N, Fujita N, Yoshimori T, Hayashi N (2012) Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer 131(3):548–557PubMedCrossRefGoogle Scholar
  177. Shimoda R, Nagashima M, Sakamoto M, Yamaguchi N, Hirohashi S, Yokota J, Kasai H (1994) Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res 54(12):3171–3172PubMedGoogle Scholar
  178. Shirakawa H, Suzuki H, Shimomura M, Kojima M, Gotohda N, Takahashi S, Nakagohri T, Konishi M, Kobayashi N, Kinoshita T, Nakatsura T (2009) Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci 100(8):1403–1407PubMedCrossRefGoogle Scholar
  179. Song J, Qu Z, Guo X, Zhao Q, Zhao X, Gao L, Sun K, Shen F, Wu M, Wei L (2009) Hypoxia-induced autophagy contributes to the chemoresistance of hepatocellular carcinoma cells. Autophagy 5(8):1131–1144PubMedCrossRefGoogle Scholar
  180. Stahl S, Ittrich C, Marx-Stoelting P, Köhle C, Altug-Teber O, Riess O, Bonin M, Jobst J, Kaiser S, Buchmann A, Schwarz M (2005) Genotype-phenotype relationships in hepatocellular tumors from mice and man. Hepatology 42(2):353–361PubMedCrossRefGoogle Scholar
  181. Stegh AH (2012) Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opin Ther Targets 16(1):67–83PubMedCrossRefGoogle Scholar
  182. Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, Zhuang SM (2009) MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69(3):1135–1142PubMedCrossRefGoogle Scholar
  183. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351(4):820–824PubMedCrossRefGoogle Scholar
  184. Sun JC, Pan K, Chen MS, Wang QJ, Wang H, Ma HQ, Li YQ, Liang XT, Li JJ, Zhao JJ, Chen YB, Pang XH, Liu WL, Cao Y, Guan XY, Lian QZ, Xia JC (2010) Dendritic cells-mediated CTLs targeting hepatocellular carcinoma stem cells. Cancer Biol Ther 10(4):368–375PubMedCrossRefGoogle Scholar
  185. Suo A, Zhang M, Yao Y, Zhang L, Huang C, Nan K, Zhang W (2012) Proteome analysis of the effects of sorafenib on human hepatocellular carcinoma cell line HepG2. Med Oncol 29(3):1827–1836Google Scholar
  186. Tanaka H, Fujita N, Sugimoto R, Urawa N, Horiike S, Kobayashi Y, Iwasa M, Ma N, Kawanishi S, Watanabe S, Kaito M, Takei Y (2008) Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C. Br J Cancer 98(3):580–586PubMedCrossRefGoogle Scholar
  187. Theise ND, Yao JL, Harada K, Hytiroglou P, Portmann B, Thung SN, Tsui W, Ohta H, Nakanuma Y (2003) Hepatic ‘stem cell’ malignancies in adults: four cases. Histopathology 43(3):263–271PubMedCrossRefGoogle Scholar
  188. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890PubMedCrossRefGoogle Scholar
  189. Tomuleasa C, Soritau O, Rus-Ciuca D, Pop T, Todea D, Mosteanu O, Pintea B, Foris V, Susman S, Kacsó G, Irimie A (2010) Isolation and characterization of hepatic cancer cells with stem-like properties from hepatocellular carcinoma. J Gastrointesin Liver Dis 19(1):61–67Google Scholar
  190. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146PubMedCrossRefGoogle Scholar
  191. Tsai SM, Lin SK, Lee KT, Hsiao JK, Huang JC, Wu SH, Ma H, Wu SH, Tsai LY (2009a) Evaluation of redox statuses in patients with hepatitis B virus-associated hepatocellular carcinoma. Ann Clin Biochem 46(Pt 5):394–400PubMedCrossRefGoogle Scholar
  192. Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, Lin CD, Liao YL, Wang JL, Chau YP, Hsu MT, Hsiao M, Huang HD, Tsou AP (2009b) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49(5):1571–1582PubMedCrossRefGoogle Scholar
  193. Ura S, Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, Sunakozaka H, Sakai Y, Horimoto K, Kaneko S (2009) Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 49(4):1098–1112PubMedCrossRefGoogle Scholar
  194. van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11(9):644–656PubMedCrossRefGoogle Scholar
  195. van Malenstein H, Gevaert O, Libbrecht L, Daemen A, Allemeersch J, Nevens F, Van Cutsem E, Cassiman D, De Moor B, Verslype C, van Pelt J (2010) A seven-gene set associated with chronic hypoxia of prognostic importance in hepatocellular carcinoma. Clin Cancer Res 16(16):4278–4288PubMedCrossRefGoogle Scholar
  196. van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, Eferl R, Beug H, Dolznig H, Mikulits W (2009a) Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28(45):4022–4033PubMedCrossRefGoogle Scholar
  197. van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, Machat G, Grubinger M, Huber H, Mikulits W (2009b) Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol 5(8):1169–1179PubMedCrossRefGoogle Scholar
  198. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768PubMedCrossRefGoogle Scholar
  199. Wang Y, Kato N, Hoshida Y, Yoshida H, Taniguchi H, Goto T, Moriyama M, Otsuka M, Shiina S, Shiratori Y, Ito Y, Omata M (2003) Interleukin-1β gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection. Hepatology 37(1):65–71PubMedCrossRefGoogle Scholar
  200. Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, Tantoso E, Li KB, Ooi LL, Tan P, Lee CG (2008) Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 283(19):13205–13215PubMedCrossRefGoogle Scholar
  201. Wang F, Jing X, Li G, Wang T, Yang B, Zhu Z, Gao Y, Zhang Q, Yang Y, Wang Y, Wang P, Du Z (2012) Foxp3 + regulatory T cells are associated with the natural history of chronic hepatitis B and poor prognosis of hepatocellular carcinoma. Liver Int 32(4):644–655PubMedCrossRefGoogle Scholar
  202. Wheelhouse NM, Chan YS, Gillies SE, Caldwell H, Ross JA, Harrison DJ, Prost S (2003) TNF-α induced DNA damage in primary murine hepatocytes. Int J Mol Med 12(6):889–894PubMedGoogle Scholar
  203. White LA, Menzin J, Korn JR, Friedman M, Lang K, Ray S (2012) Medical care costs and survival associated with hepatocellular carcinoma among the elderly. Clin Gastroenterol Hepatol 10(5):547–554PubMedCrossRefGoogle Scholar
  204. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109PubMedCrossRefGoogle Scholar
  205. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844PubMedCrossRefGoogle Scholar
  206. Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, Wong N (2008) MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of stathmin1. Gastroenterology 135(1):257–269PubMedCrossRefGoogle Scholar
  207. Wong VW, Yu J, Cheng AS, Wong GL, Chan HY, Chu ES, Ng EK, Chan FK, Sung JJ, Chan HL (2009) High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int J Cancer 124(12):2766–2770PubMedCrossRefGoogle Scholar
  208. Wu K, Kryczek I, Chen L, Zou W, Welling TH (2009) Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7–H1/programmed death-1 interactions. Cancer Res 69(20):8067–8075PubMedCrossRefGoogle Scholar
  209. Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ (2012) Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 38(3):218–225PubMedCrossRefGoogle Scholar
  210. Yam JW, Wong CM, Ng IO (2010) Molecular and functional genetics of hepatocellular carcinoma. Front Biosci (Schol Ed) 2:117–134CrossRefGoogle Scholar
  211. Yamashita YI, Shimada M, Hasegawa H, Minagawa R, Rikimaru T, Hamatsu T, Tanaka S, Shirabe K, Miyazaki JI, Sugimachi K (2001) Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res 61(3):1005–1012PubMedGoogle Scholar
  212. Yan W, Fu Y, Tian D, Liao J, Liu M, Wang B, Xia L, Zhu Q, Luo M (2009) PI3 kinase/Akt signaling mediates epithelial-mesenchymal transition in hypoxic hepatocellular carcinoma cells. Biochem Biophys Res Commun 382(3):631–636PubMedCrossRefGoogle Scholar
  213. Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, Monga SP, Geller DA, Lotze MT, Tsung A (2012) High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55(6):1863–1875PubMedCrossRefGoogle Scholar
  214. Yang J, Zhou F, Xu T, Deng H, Ge YY, Zhang C, Li J, Zhuang SM (2008a) Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res 638(1–2):205–209PubMedGoogle Scholar
  215. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, Li ML, Tam KH, Lam CT, Poon RT, Fan ST (2008b) Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47(3):919–928PubMedCrossRefGoogle Scholar
  216. Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, Peng WL, Wu JC (2009) Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 50(5):1464–1474PubMedCrossRefGoogle Scholar
  217. Yang JD, Nakamura I, Roberts LR (2011) The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol 21(1):35–43PubMedCrossRefGoogle Scholar
  218. Yasuda E, Kumada T, Takai S, Ishisaki A, Noda T, Matsushima-Nishiwaki R, Yoshimi N, Kato K, Toyoda H, Kaneoka Y, Yamaguchi A, Kozawa O (2005) Attenuated phosphorylation of heat shock protein 27 correlates with tumor progression in patients with hepatocellular carcinoma. Biochem Biophys Res Commun 337(1):337–342PubMedCrossRefGoogle Scholar
  219. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120(7):1444–1450PubMedCrossRefGoogle Scholar
  220. Yoshida T, Hisamoto T, Akiba J, Koga H, Nakamura K, Tokunaga Y, Hanada S, Kumemura H, Maeyama M, Harada M, Ogata H, Yano H, Kojiro M, Ueno T, Yoshimura A, Sata M (2006) Spreds, inhibitors of the Ras/ERK signal transduction, are dysregulated in human hepatocellular carcinoma and linked to the malignant phenotype of tumors. Oncogene 25(45):6056–6066PubMedCrossRefGoogle Scholar
  221. Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Yamazaki M, Uemura M, Fukui H (2005) Different cascades in the signaling pathway of two vascular endothelial growth factor (VEGF) receptors for the VEGF-mediated murine hepatocellular carcinoma development. Oncol Rep 13(5):853–857PubMedGoogle Scholar
  222. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809PubMedCrossRefGoogle Scholar
  223. Zhang Y, Yang B, Du Z, Bai T, Gao YT, Wang YJ, Lou C, Wang FM, Bai Y (2007) Aberrant methylation of SPARC in human hepatocellular carcinoma and its clinical implication. World J Gastroenterol 18(17):2043–2052CrossRefGoogle Scholar
  224. Zhao LJ, Wang L, Ren H, Cao J, Li L, Ke JS, Qi ZT (2005) Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors. Exp Cell Res 305(1):23–32PubMedCrossRefGoogle Scholar
  225. Zheng FQ, Xu Y, Yang RJ, Wu B, Tan XH, Qin YD, Zhang QW (2009) Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models. Acta Pharmacol Sin 30(5):617–627PubMedCrossRefGoogle Scholar
  226. Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, Li J (2010) Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer 126(9):2067–2078PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rajagopal N. Aravalli
    • 1
  • Erik N. K. Cressman
    • 1
  • Clifford J. Steer
    • 2
    • 3
  1. 1.Department of RadiologyUniversity of Minnesota Medical SchoolMinneapolisUSA
  2. 2.Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Department of Genetics, Cell Biology, and DevelopmentUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations