Archives of Toxicology

, Volume 87, Issue 1, pp 197–208 | Cite as

Isolation and characterization of two new non-hemorrhagic metalloproteinases with fibrinogenolytic activity from the mapanare (Bothrops colombiensis) venom

  • María E. Girón
  • Alexis Rodríguez-Acosta
  • Ana María Salazar
  • Elda E. Sánchez
  • Jacob Galán
  • Carlos Ibarra
  • Belsy Guerrero


Colombienases are acidic, low molecular weight metalloproteinases (Mr of 23,074.31 Da colombienase-1 and 23,078.80 Da colombienase-2; pI of 6.0 and 6.2, respectively) isolated from Bothrops colombiensis snake venom. The chromatographic profile in RP-HPLC and its partial sequence confirmed its high homogeneity. Both colombienases present fibrino(geno)lytic activity, but did not show any hemorrhagic, amidolytic, plasminogen activator or coagulant activities, and no effect on platelet aggregation induced by collagen or ADP. Both enzymes were strongly active on fibrinogen Aα chains followed by the Bβ chains, and colombienases-2, at high doses, also degraded the γ chains. This activity was stable at temperatures ranging between 4 and 37 °C, with a maximum activity at 25 °C, and at pHs between 7 and 9. The homology demonstrated by the comparison of sequences, with zinc-dependent metalloproteinases, as well as the metal chelant effects on, confirmed that the colombienases were metalloproteinases, particularly to α-fibrinogenases belonging to the P-I class of SVPMs (20–30 kDa), which contain only the single-domain proteins. The biological characteristics of the colombienases confer a therapeutic potential, since they contain a high fibrino(geno)lytic activity, devoid of hemorrhagic activity. These metalloproteinases might be explored as thrombolytic agents given that they dissolve fibrin clots or prevent their formation.


Bothrops colombiensis Colombienases Fibrinolytic activity Fibrinogenolytic activity Metalloproteinases Hemostasis 


  1. Abi TG, Anand A, Taraphder S (2009) Proton affinities of some amino acid side chains in a restricted environment. J Phys Chem B 113:9570–9576PubMedCrossRefGoogle Scholar
  2. Akao PK, Tonoli CC, Navarro MS, Cintra AC, Neto JR, Arni RK, Murakami MT (2010) Structural studies of BmooMPalpha-I, a non-hemorrhagic metalloproteinase from Bothrops moojeni venom. Toxicon 55:361–368PubMedCrossRefGoogle Scholar
  3. Baker WF Jr (2002) Thrombolytic therapy. Clin Appl Thromb Hemost 8:291–314PubMedCrossRefGoogle Scholar
  4. Baldo C, Tanjoni I, León IR, Batista IF, Della-Casa MS, Clissa PB, Weinlich R, Lopes-Ferreira M, Lebrun I, Amarante-Mendes GP, Rodrigues VM, Perales J, Valente RH, Moura-da-Silva AM (2008) BnP1, a novel P-I metalloproteinase from Bothrops neuwiedi venom: biological effects benchmarking relatively to jararhagin, a P-III SVMP. Toxicon 51:54–65PubMedCrossRefGoogle Scholar
  5. Bello CA, Hermogenes AL, Magalhaes A, Veiga SS, Gremski LH, Richardson M, Sánchez EF (2006) Isolation and biochemical characterization of a fibrinolytic proteinase from Bothrops leucurus (white-tailed jararaca) snake venom. Biochimie 88:189–200PubMedCrossRefGoogle Scholar
  6. Berger M, Pinto AF, Guimarães JA (2008) Purification and functional characterization of bothrojaractivase, a prothrombin-activating metalloproteinase isolated from Bothrops jararaca snake venom. Toxicon 91:488–501CrossRefGoogle Scholar
  7. Bernardes CP, Santos-Filho NA, Costa TR, Gomes MS, Torres FS, Costa J, Borges MH, Richardson M, dos Santos DM, de Castro-Pimenta AM, Homsi-Brandeburgo MI, Soares AM, de Oliveira F (2008) Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom. Toxicon 51:574–584PubMedCrossRefGoogle Scholar
  8. Bjarnason JB, Fox JW (1994) Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther 2:325–372CrossRefGoogle Scholar
  9. Calvete JJ, Borges A, Segura A, Flores-Díaz M, Alape-Girón A, Gutiérrez JM, Diez N, De Sousa L, Kiriakos D, Sánchez E, Faks JG, Escolano J, Sanz L (2009) Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: contributing to its taxonomy and snakebite management. J Proteomics 72:227–240PubMedCrossRefGoogle Scholar
  10. Cintra AC, De Toni LG, Sartim MA, Franco JJ, Caetano RC, Murakami MT, Sampaio SV (2012) Batroxase, a new metalloproteinase from B. atrox snake venom with strong fibrinolytic activity. Toxicon 60:70–82PubMedCrossRefGoogle Scholar
  11. Clissa PB, Lopes-Ferreira M, Della-Casa MS, Farsky SH, Moura-da-Silva AM (2006) Importance of jararhagin disintegrin-like and cysteine-rich domains in the early events of local inflammatory response. Toxicon 47:591–596PubMedCrossRefGoogle Scholar
  12. Da Silva M, Lucena S, Aguilar I, Rodríguez-Acosta A, Salazar AM, Sánchez EE, Girón ME, Carvajal Z, Arocha-Piñango CL, Guerrero B (2009) Anti-platelet effect of cumanastatin 1, a disintegrin isolated from venom of South American Crotalus rattlesnake. Thromb Res 123:731–739PubMedCrossRefGoogle Scholar
  13. Deitcher SR, Toombs CF (2005) Non-clinical and clinical characterization of a novel acting thrombolytic: alfimeprase. Pathophysiol Haemost Thromb 34:215–220PubMedCrossRefGoogle Scholar
  14. Estrella A, Sánchez EE, Galán JA, Tao WA, Guerrero B, Navarrete L, Rodríguez-Acosta A (2011) Characterization of toxins from the broad-banded water snake Helicops angulatus (Linnaeus, 1758): isolation of a cysteine-rich secretory protein, Helicopsin. Arch Toxicol 85:305–313Google Scholar
  15. Fox JW, Serrano SM (2008) Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 275:3016–3030PubMedCrossRefGoogle Scholar
  16. Fox JW, Serrano SM (2009) Timeline of key events in snake venom metalloproteinase research. J Proteomics 72:200–209PubMedCrossRefGoogle Scholar
  17. Franceschi A, Rucavado A, Mora N, Gutiérrez JM (2000) Purification and characterization of BaH4, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Toxicon 38:63–77PubMedCrossRefGoogle Scholar
  18. Francis CW, Marder VJ, Martin SE (1980) Plasmic degradation of crosslinked fibrin. I. Structural analysis of the particulate clot and identification of new macromolecular-soluble complexes. Blood 56:456–464PubMedGoogle Scholar
  19. Gabrijelcic D, Drujan B, Gubensek F (1982) Coagulant proteinase from Bothrops colombiensis venom. Toxicon 20:275–278PubMedCrossRefGoogle Scholar
  20. Garfin D (1990) Isoelectric focusing. In: Deutscher MP (ed) Guide to protein purification. Method in enzymology, vol 182. Academic Press, San Diego, pp 459–477CrossRefGoogle Scholar
  21. Giles AR (1987) Guidelines for the use of animals in biomedical research. Thromb Haemost 58:1078–1084PubMedGoogle Scholar
  22. Girón ME, Estrella A, Sánchez EE, Galán J, Tao WA, Guerrero B, Salazar AM, Rodríguez-Acosta A (2011) Purification and characterization of a metalloproteinase, Porthidin-1, from the venom of Lansberg’s hog-nosed pitvipers (Porthidium lansbergii hutmanni). Toxicon 57:608–618PubMedCrossRefGoogle Scholar
  23. Gomes MS, Mendes MM, de Oliveira F, de Andrade RM, Bernardes CP, Hamaguchi A, de Alcântara TM, Soares AM, Rodrigues VM, Homsi-Brandeburgo MI (2009) BthMP: a new weakly hemorrhagic metalloproteinase from Bothrops moojeni snake venom. Toxicon 53:24–32PubMedCrossRefGoogle Scholar
  24. Gomes MS, de Queiroz MR, Mamede CC, Mendes MM, Hamaguchi A, Homsi-Brandeburgo MI, Sousa MV, Aquino EN, Castro MS, de Oliveira F, Rodrigues VM (2011) Purification and functional characterization of a new metalloproteinase (BleucMP) from Bothrops leucurus snake venom. Comp Biochem Physiol C Toxicol Pharmacol 153:290–300PubMedCrossRefGoogle Scholar
  25. Grams F, Huber R, Kress LF, Moroder L, Bode W (1993) Activation of snake venom metalloproteinases by a cysteine switch-like mechanism. FEBS Lett 335:76–80PubMedCrossRefGoogle Scholar
  26. Guerrero B, Arocha-Piñango CL (1992) Activation of human prothrombin by the venom of Lonomia achelous (Cramer) caterpillars. Thromb Res 66:169–177PubMedCrossRefGoogle Scholar
  27. Guerrero B, Arocha-Piñango CL, Pinto MA, Müller CA, Gil San Juan AG, Amorim S, Perales J (2001) Thrombolytic effect of Lonomin V in a rabbit jugular vein thrombosis model. Blood Coagul Fibrinolysis 12:521–529PubMedCrossRefGoogle Scholar
  28. Gutiérrez JM, Gené JA, Rojas G, Cerdas L (1985) Neutralización of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom. Toxicon 23:887–893PubMedCrossRefGoogle Scholar
  29. Gutiérrez JM, Romero M, Diaz C, Borkow G, Ovadia M (1995) Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake Bothrops asper (terciopelo). Toxicon 33:19–29PubMedCrossRefGoogle Scholar
  30. Gutiérrez JM, Rucavado A, Escalante T, Díaz C (2005) Hemorrhagic induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 45:997–1011PubMedCrossRefGoogle Scholar
  31. Jeon OH, Kim DS (1999a) Molecular cloning and functional characterization of a snake venom metalloprotease. Eur J Biochem 263:526–533PubMedCrossRefGoogle Scholar
  32. Jeon OH, Kim DS (1999b) Cloning, expression, and characterization of a cDNA encoding snake venom metalloprotease. Biochem Mol Biol Int 47:417–425PubMedGoogle Scholar
  33. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 227:608–609CrossRefGoogle Scholar
  34. Liang XX, Zhou YN, Chen JS, Qiu PX, Chen HZ, Sun HH, Wu YP, Yan GM (2005) Enzymological characterization of FII(a), a fibrinolytic enzyme from Agkistrodon acutus venom. Acta Pharmacol Sin 26:1474–1478PubMedCrossRefGoogle Scholar
  35. Lijnen HR, Collen D (1995) Fibrinolytic agents: mechanisms of activity and pharmacology. Thromb Haemost 74:387–390PubMedGoogle Scholar
  36. Lopes DS, Baldo C, Oliveira Cde F, de Alcântara TM, Oliveira JD, Gourlart LR, Hamaguchi A, Homsi-Brandeburgo MI, Moura-da-Silva AM, Clissa PB, Rodrigues Vde M (2009) Characterization of inflammatory reaction induced by neuwiedase, a P-I metalloproteinase isolated from Bothrops neuwiedi venom. Toxicon 54:42–49PubMedCrossRefGoogle Scholar
  37. Lowry OH, Rosembrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  38. Mackessy SP (1996) Characterization of the major metalloprotease isolated from the venom of the northern pacific rattlesnake, Crotalus viridis oreganus. Toxicon 34:1277–1285PubMedCrossRefGoogle Scholar
  39. Marcussi S, Bernardes CP, Santos-Finho NA, Mazzi MV, Oliveira CZ, Izidoro LM, Fuly AL, Magno AJ, Braz ASK, Fontes MRM, Giglio JR, Soares AM (2007) Molecular and functional characterization of a new non-hemorrhagic metalloprotease from Bothrops jararacussu snake venom with antiplatelet activity. Peptides 28:2328–2339PubMedCrossRefGoogle Scholar
  40. Marder VJ, Novokhatny V (2010) Direct fibrinolytic agents: biochemical attributes, preclinical foundation and clinical potential. J Thromb Haemost 8:433–444PubMedCrossRefGoogle Scholar
  41. Markland FS (1998) Snake venoms and the hemostatic system. Toxicon 36:1749–1800PubMedCrossRefGoogle Scholar
  42. Markland FS, Swenson S (2010) Fibrolase: trials and tribulations. Toxins (Basel) 2:793–808Google Scholar
  43. Marsh NA, Arocha-Piñango CL (1972) Evaluation of the fibrin plate method for estimating plasminogen activator. Thromb Diath Haemorrh 28:75–88PubMedGoogle Scholar
  44. Marsh N, Williams V (2005) Practical applications of snake venom toxins in haemostasis. Toxicon 45:1171–1181PubMedCrossRefGoogle Scholar
  45. Matsui T, Fujimura Y, Titani K (2000) Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 1477:146–156PubMedCrossRefGoogle Scholar
  46. Mazzi MV, Marcussi S, Carlos GB, Stabeli RG, Franco JJ, Ticli FK, Cintra AC, Franca SC, Soares AM, Sampaio SV (2004) A new hemorrhagic metalloprotease from Bothrops jararacussu snake venom: isolation and biochemical characterization. Toxicon 44:215–223PubMedCrossRefGoogle Scholar
  47. Moura-da-Silva AM, Butera D, Tanjoni I (2007) Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells. Curr Pharm Des 13:2893–2905PubMedCrossRefGoogle Scholar
  48. Mussoni L, Raczka E, Chmielewska J, Donati MB, Latallo ZS (1979) Plasminogen assay in rabbit, rat and mouse plasma using the chromogenic substrate S-2251. Thromb Res 15:341–349PubMedCrossRefGoogle Scholar
  49. Patiño AC, Pereañez JA, Núñez V, Benjumea DM, Fernandez M, Rucavado A, Sanz L, Calvete JJ (2010) Isolation and biological characterization of Batx-I, a weak hemorrhagic and fibrinogenolytic PI metalloproteinase from Colombian Bothrops atrox venom. Toxicon 56:936–943PubMedCrossRefGoogle Scholar
  50. Rodrigues VM, Soares AM, Andrião-Escarso SH, Franceschi AM, Rucavado A, Gutiérrez JM, Giglio JR (2001) Pathological alterations induced by neuwiedase, a metalloproteinase isolated from Bothrops neuwiedi snake venom. Biochimie 83:471–479PubMedCrossRefGoogle Scholar
  51. Rodríguez-Acosta A, Sánchez EE, Márquez A, Carvajal Z, Salazar AM, Girón ME, Estrella A, Gil A, Guerrero B (2010) Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom. Toxicon 56:926–935PubMedCrossRefGoogle Scholar
  52. Salazar AM, Rodriguez-Acosta A, Girón ME, Aguilar I, Guerrero B (2007) A comparative analysis of the clotting and fibrinolytic activities of the mapanare (Bothrops atrox) snake venom from different geographical areas in Venezuela. Thromb Res 120:95–104PubMedCrossRefGoogle Scholar
  53. Salazar AM, Vivas J, Sánchez EE, Rodríguez-Acosta A, Ibarra C, Gil A, Carvajal Z, Girón ME, Estrella A, Navarrete LF, Guerrero B (2011) Hemostatic and toxinological diversities in venom of Micrurus tener tener, Micrurus fulvius fulvius and Micrurus isozonus coral snakes. Toxicon 58:35–45PubMedCrossRefGoogle Scholar
  54. Sánchez EF, Diniz CR, Richardson M (1991) The complete amino acid sequence of the haemorrhagic factor LHFII, a metalloproteinase isolated from the venom of the bushmaster snake (Lachesis muta muta). FEBS Lett 282:178–182PubMedCrossRefGoogle Scholar
  55. Sánchez EF, Souza CT, Bello CA, Richardson M, Oliveira EB, Magalhaes A (2003) Resolution of isoforms of mutalysin II, the metalloproteinase from bushmaster snake venom. Toxicon 41:1021–1031PubMedCrossRefGoogle Scholar
  56. Sánchez EE, Rodríguez-Acosta A, Palomar R, Lucena SE, Bashir S, Soto JG, Pérez JC (2009) Colombistatin: a disintegrin isolated from the venom of the South American snake (Bothrops colombiensis) that effectively inhibits platelet aggregation and SK-Mel-28 cell adhesion. Arch Toxicol 83:271–279PubMedCrossRefGoogle Scholar
  57. Sánchez EF, Schneider FS, Yarleque A, Borges MH, Richardson M, Figueiredo SG, Evangelista KS, Eble JA (2010) The novel metalloproteinase atroxlysin-I from Peruvian Bothrops atrox (Jergón) snake venom acts both on blood vessel ECM and platelets. Arch Biochem Biophys 496:9–20PubMedCrossRefGoogle Scholar
  58. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379PubMedCrossRefGoogle Scholar
  59. Senis YA, Kim PY, Fuller GLJ, Garcia A, Prabhakar S, Wilkinson MC, Brittan H, Zitzmann N, Wait R, Warrell DA, Watson SP, Kamiguti AS, Theakston DG, Nesheim ME, Laing GD (2006) Isolation and characterization of cotiaractivase, a novel low molecular weight prothrombin activator from the venom of Bothrops cotiara. Biochim Biophys Acta 1764:863–871PubMedCrossRefGoogle Scholar
  60. Serrano SM, Sampaio CA, Mandelbaum FR (1993) Basic proteinases from Bothrops moojeni (caissaca) venom-II. Isolation of the metalloproteinase MPB. Comparison of the proteolytic activity on natural substrates by MPB, MSP 1 and MSP 2. Toxicon 31:483–492PubMedCrossRefGoogle Scholar
  61. Silva MB, Schattner M, Ramos CR, Junqueira-de-Azevedo IL, Guarnieri MC, Lazzari MA, Sampaio CA, Pozner RG, Ventura JS, Ho PL, Chudzinski-Tavassi AM (2003) A prothrombin activator from Bothrops erythromelas (jararaca-da-seca) snake venom: characterization and molecular cloning. Biochem J 369:129–139PubMedCrossRefGoogle Scholar
  62. Simonian MH, Smith JA (2006) Spectrophotometric and colorimetric determination of protein concentration. Curr Protoc Mol Biol, Chapter 10 Unit 10.1AGoogle Scholar
  63. Stroka A, Donato JL, Bon C, Hyslop S, de Araújo AL (2005) Purification and characterization of a hemorrhagic metalloproteinase from Bothrops lanceolatus (Fer-de-lance) snake venom. Toxicon 45:411–420PubMedCrossRefGoogle Scholar
  64. Swenson S, Markland FS Jr (2005) Snake venom fibrin(ogen)olytic enzymes. Toxicon 45:1021–1039PubMedCrossRefGoogle Scholar
  65. Takeda S, Takeya H, Iwanaga S (2012) Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim Biophys Acta 1824:164–176PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • María E. Girón
    • 1
  • Alexis Rodríguez-Acosta
    • 1
  • Ana María Salazar
    • 2
  • Elda E. Sánchez
    • 3
  • Jacob Galán
    • 4
  • Carlos Ibarra
    • 2
  • Belsy Guerrero
    • 2
    • 5
  1. 1.Laboratorio de Inmunoquímica y UltraestructuraInstituto Anatómico de la Universidad Central de VenezuelaCaracasVenezuela
  2. 2.Laboratorio de Fisiopatología, Centro de Medicina ExperimentalInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela
  3. 3.Department of Chemistry and the National Natural Toxins Research CenterTexas A&M University-KingsvilleKingsvilleUSA
  4. 4.Department of Molecular Biology, Institute for Research in Immunology and Cancer (IRIC)Université de MontréalMontrealCanada
  5. 5.Laboratorio de Fisiopatología y Coagulación SanguíneaInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela

Personalised recommendations