Archives of Toxicology

, Volume 87, Issue 1, pp 99–109 | Cite as

Size of TiO2 nanoparticles influences their phototoxicity: an in vitro investigation

  • Sijing Xiong
  • Saji George
  • Zhaoxia Ji
  • Sijie Lin
  • Haiyang Yu
  • Robert Damoiseaux
  • Bryan France
  • Kee Woei Ng
  • Say Chye Joachim Loo
Inorganic Compounds

Abstract

To uncover the size influence of TiO2 nanoparticles on their potential toxicity, the cytotoxicity of different-sized TiO2 nanoparticles with and without photoactivation was tested. It was demonstrated that without photoactivation, TiO2 nanoparticles were inert up to 100 μg/ml. On the contrary, with photoactivation, the toxicity of TiO2 nanoparticles significantly increased, which correlated well with the specific surface area of the particles. Our results also suggest that the generation of hydroxyl radicals and reactive oxygen species (ROS)-mediated damage to the surface-adsorbed biomolecules could be the two major reasons for the cytotoxicity of TiO2 nanoparticles after photoactivation. Higher ROS generation from smaller particles was detected under both biotic and abiotic conditions. Smaller particles could adsorb more proteins, which was confirmed by thermogravimetric analysis. To further investigate the influence of the generation of hydroxyl radicals and adsorption of protein, poly (ethylene-alt-maleic anhydride) (PEMA) and chitosan were used to coat TiO2 nanoparticles. The results confirmed that surface coating of TiO2 nanoparticles could reduce such toxicity after photoactivation, by hindering adsorption of biomolecules and generation of hydroxyl radical (·OH) during photoactivation.

Keywords

Titanium dioxide nanoparticles Phototoxicity Cytotoxicity Nanotoxicity Surface coating 

Notes

Acknowledgments

The authors would like to acknowledge the financial support from the Agency for Science, Technology and Research (A*STAR) (Project No: 102 129 0098), the National Medical Research Council (NMRC/EDG/0062/2009) and the Nanyang Institute of Technology in Health & Medicine (NITHM), Singapore. Acknowledgements to the Ian Ferguson Postgraduate Fellowship for Sijing Xiong’s research attachment at the University of California, Los Angeles (UCLA). We thank Dr. Andre E. Nel and Dr. Tian Xian (UC Center for Environmental Implications of Nanotechnology) for their kind help in enabling this study.

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

204_2012_912_MOESM1_ESM.tif (127 kb)
Fig.S1 X-ray powder diffraction (XRD) patterns of T10, T20 and T100 nanoparticles. The crystalline phases of different-sized TiO2 nanoparticles were identified by XRD (Panalytical X’Pert Prodiffractometer, CuKα radiation) with a step size of 0.02° and counting time of 0.5 s/step over a range of 20°-80° 2θ. (TIFF 126 kb)
204_2012_912_MOESM2_ESM.tif (115 kb)
Fig.S2 UV − Vis absorption spectra of T20, T20-chitosan and T20-PEMA nanoparticles. The nanoparticles were dispersed in water at a concentration of 50 μg/ml. The UV–Vis absorption spectra were tested by using UV Spectrometer. Both T20-chitosan and T20-PEMA nanoparticles showed decreased UV–Vis absorbance as compared to bare T20 nanoparticles. The T20-PEMA nanoparticles showed more obvious decrease in UV absorbance than T20-chitosan nanoparticles. This could be because more PEMA was attached onto T20 nanoparticles as compared to chitosan, which was proven in TGA studies. (TIFF 114 kb)

References

  1. Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212(2):145–156CrossRefGoogle Scholar
  2. Araujo JA, Nel AE (2009) Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol 6:19. doi: 10.1186/1743-8977-6-24 CrossRefGoogle Scholar
  3. Bar-Ilan O, Louis KM, Yang SP, Pedersen JA, Hamers RJ, Peterson RE, Heideman W (2011) Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology, 1–10.doi: 10.3109/17435390.2011.604438
  4. Brookes PS, Yoon YS, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833. doi: 10.1152/ajpcell.00139.2004 PubMedCrossRefGoogle Scholar
  5. Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52(8):2346–2348PubMedGoogle Scholar
  6. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762. doi: 10.1016/j.freeradbiomed.2009.12.022 PubMedCrossRefGoogle Scholar
  7. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95PubMedGoogle Scholar
  8. Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, Nystrom T (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci USA 97(11):5746–5749. doi: 10.1073/pnas.100422497 PubMedCrossRefGoogle Scholar
  9. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247PubMedCrossRefGoogle Scholar
  10. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Mädler L, Nel AE (2009) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1):15–29. doi: 10.1021/nn901503q CrossRefGoogle Scholar
  11. George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, Zink JI, Nel AE, Madler L (2011a) Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133(29):11270–11278. doi: 10.1021/ja202836s PubMedCrossRefGoogle Scholar
  12. George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE (2011b) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3):1805–1817. doi: 10.1021/nn102734s PubMedCrossRefGoogle Scholar
  13. Gopalan RC, Osman IF, Amani A, De Matas M, Anderson D (2009) The effect of zinc oxide and titanium dioxide nanoparticles in the Comet assay with UVA photoactivation of human sperm and lymphocytes. Nanotoxicology 3(1):33–39CrossRefGoogle Scholar
  14. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50. doi: 10.1146/annurev.nutr.16.1.33 PubMedCrossRefGoogle Scholar
  15. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY-C, Loo JS-C (2010a) Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 48(6):1762–1766PubMedCrossRefGoogle Scholar
  16. Heng BC, Zhao X, Xiong S, Ng KW, Boey FYC, Loo JSC (2010b) Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Arch Toxicol 85(6):695–704. doi: 10.1007/s00204-010-0608-7 PubMedCrossRefGoogle Scholar
  17. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. doi: 10.1021/cr00033a004 CrossRefGoogle Scholar
  18. Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, Nanashima N, Niki E, Yoshida Y (2009) Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol 22(3):543–553. doi: 10.1021/tx800289z PubMedCrossRefGoogle Scholar
  19. Jang HD, Kim S-K, Kim S-J (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3(2):141–147. doi: 10.1023/a:1017948330363 CrossRefGoogle Scholar
  20. Ji Z, Jin X, George S, Xia T, Meng H, Wang X, Suarez E, Zhang H, Hoek EMV, Godwin H, Nel AE, Zink JI (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44(19):7309–7314. doi: 10.1021/es100417s PubMedCrossRefGoogle Scholar
  21. Lagopati N, Kitsiou PV, Kontos AI, Venieratos P, Kotsopoulou E, Kontos AG, Dionysiou DD, Pispas S, Tsilibary EC, Falaras P (2010) Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J Photochem Photobiol A 214(2–3):215–223CrossRefGoogle Scholar
  22. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795PubMedCrossRefGoogle Scholar
  23. Lindenschmidt RC, Driscoll KE, Perkins MA, Higgins JM, Maurer JK, Belfiore KA (1990) The comparison of a fibrogenic and two nonfibrogenic dusts by bronchoalveolar lavage. Toxicol Appl Pharmacol 102(2):268–281PubMedCrossRefGoogle Scholar
  24. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098PubMedGoogle Scholar
  25. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269PubMedCrossRefGoogle Scholar
  26. McCall MJ (2011) Environmental, health and safety issues nanoparticles in the real world. Nat Nanotechnol 6(10):613–614PubMedCrossRefGoogle Scholar
  27. Meng H, Xia T, George S, Nel AE (2009) A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3(7):1620–1627. doi: 10.1021/nn9005973 PubMedCrossRefGoogle Scholar
  28. Morris J, Willis J, De Martinis D, Hansen B, Laursen H, Sintes JR, Kearns P, Gonzalez M (2011) Science policy considerations for responsible nanotechnology decisions. Nat Nano 6(2):73–77CrossRefGoogle Scholar
  29. Nakagawa Y, Wakuri S, Sakamoto K, Tanaka N (1997) The photogenotoxicity of titanium dioxide particles. Mutation Res Genet Toxicol Environ Mutagen 394(1–3):125–132CrossRefGoogle Scholar
  30. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi: 10.1126/science.1114397 PubMedCrossRefGoogle Scholar
  31. Ng KW, Khoo SPK, Heng BC, Setyawati MI, Tan EC, Zhao X, Xiong S, Fang W, Leong DT, Loo JSC (2011) The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 32(32):8218–8225PubMedCrossRefGoogle Scholar
  32. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839. doi: 10.1289/ehp.7339 PubMedCrossRefGoogle Scholar
  33. Ophus EM, Rode L, Gylseth B, Nicholson DG, Saeed K (1979) Analysis of titanium pigments in human lung tissue. Scand J Work Environ Health 5(3):290–296PubMedCrossRefGoogle Scholar
  34. Perraud AL, Knowles HM, Schmitz C (2004) Novel aspects of signaling and ion-homeostasis regulation in immunocytes: the TRPM ion channels and their potential role in modulating the immune response. Mol Immunol 41(6–7):657–673PubMedCrossRefGoogle Scholar
  35. Reeves JF, Davies SJ, Dodd NJF, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Res Fundam Mol Mech Mutagen 640(1–2):113–122CrossRefGoogle Scholar
  36. Simi CK, Abraham TE (2009) Nanocomposite based on modified TiO2-BSA for functional applications. Colloid Surf B Biointerfaces 71(2):319–324. doi: 10.1016/j.colsurfb.2009.02.019 CrossRefGoogle Scholar
  37. Skocaj M, Filipic M, Petkovic J, Novak S (2011) Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45(4):227–247. doi: 10.2478/v10019-011-0037-0 PubMedCrossRefGoogle Scholar
  38. Stadtman ER (1992) Protein oxidation and aging. Science 257(5074):1220–1224. doi: 10.1126/science.1355616 PubMedCrossRefGoogle Scholar
  39. Stefanou E, Evangelou A, Falaras P (2010) Effects of UV-irradiated titania nanoparticles on cell proliferation, cancer metastasis and promotion. Catal Today 151(1–2):58–63CrossRefGoogle Scholar
  40. Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141(6):1423–1432. doi: 10.1083/jcb.141.6.1423 PubMedCrossRefGoogle Scholar
  41. Tanaka Y, Suganuma M (2001) Effects of heat treatment on photocatalytic property of sol-gel derived polycrystalline TiO2. J Sol-Gel Sci Technol 22(1–2):83–89. doi: 10.1023/a:1011268421046 CrossRefGoogle Scholar
  42. Vidosava BD (2004) Free radicals in cell biology. In: International review of cytology, vol 237. Academic Press, Serbia and Montenegro, pp 57–89Google Scholar
  43. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807PubMedCrossRefGoogle Scholar
  44. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134. doi: 10.1021/nn800511k PubMedCrossRefGoogle Scholar
  45. Xiong S, Zhao X, Heng BC, Ng KW, Loo JSC (2011) Cellular uptake of Poly-(d, l-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method. Biotechnol J 6(5):501–508PubMedCrossRefGoogle Scholar
  46. Zhang JL, Wages M, Cox SB, Maul JD, Li YJ, Barnes M, Hope-Weeks L, Cobb GP (2010) Effect of titanium dioxide nanomaterials and ultraviolet light coexposure on African clawed frogs (Xenopus laevis). Environ Toxicol Chem 31(1):176–183. doi: 10.1002/etc.718 CrossRefGoogle Scholar
  47. Zhao XX, Heng BC, Xiong SJ, Guo J, Tan TTY, Boey FYC, Ng KW, Loo JSC (2010) In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas. Nanotoxicology 5(2):182–194. doi: 10.3109/17435390.2010.503943 PubMedCrossRefGoogle Scholar
  48. Zhao X, Ng S, Heng BC, Guo J, Ma L, Tan TTY, Ng KW, Loo SCJ (2012) Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol, 1–16. doi: 10.1007/s00204-012-0827-1

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sijing Xiong
    • 1
  • Saji George
    • 2
    • 3
  • Zhaoxia Ji
    • 2
  • Sijie Lin
    • 2
  • Haiyang Yu
    • 1
  • Robert Damoiseaux
    • 2
  • Bryan France
    • 2
  • Kee Woei Ng
    • 1
  • Say Chye Joachim Loo
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA
  3. 3.Centre for Sustainable Nanotechnology, School of Chemical and Life SciencesNanyang PolytechnicSingaporeSingapore

Personalised recommendations