Advertisement

Archives of Toxicology

, Volume 87, Issue 6, pp 969–979 | Cite as

Metabolism of arsenic and its toxicological relevance

  • Takayuki Watanabe
  • Seishiro HiranoEmail author
Review Article

Abstract

Arsenic is a worldwide environmental pollutant and a human carcinogen. It is well recognized that the toxicity of arsenicals largely depends on the oxidoreduction states (trivalent or pentavalent) and methylation levels (monomethyl, dimethyl, and trimethyl) that are present during the process of metabolism in mammals. However, presently, the specifics of the metabolic pathway of inorganic arsenicals have yet to be confirmed. In mammals, there are two possible mechanisms that have been proposed for the metabolic pathway of inorganic arsenicals, oxidative methylation, and glutathione conjugation. Oxidative methylation, which was originally proposed in fungi, is based on findings that arsenite (iAsIII) is sequentially converted to monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) in both humans and in laboratory animals such as mice and rats. However, recent in vitro observations have demonstrated that arsenic is only methylated in the presence of glutathione (GSH) or other thiol compounds, which strongly suggests that arsenic is methylated in trivalent forms. The glutathione conjugation mechanism is supported by findings that have shown that most intracellular arsenicals are trivalent and excreted from cells as GSH conjugates. Since non-conjugated trivalent arsenicals are highly reactive with thiol compounds and are easily converted to less toxic corresponding pentavalent arsenicals, the arsenic–glutathione conjugate stability may be the most important factor for determining the toxicity of arsenicals. In addition, “being a non-anionic form” also appears to be a determinant of the toxicity of oxo-arsenicals or thioarsenicals. The present review discusses both the metabolism of arsenic and the toxicity of arsenic metabolites.

Keywords

Arsenic (+3 oxidation state) methyltransferase Glutathione Multidrug resistance-associated protein Thioarsenical Oxidoreduction 

Notes

Acknowledgments

This work was partially supported by Grant-in-Aid from Ministry of Education, Culture, Sports, Science, and Technology (23390167-002).

Conflict of interest

The authors declare no conflict of interest.

References

  1. Andrewes P, Kitchin KT, Wallace K (2003) Dimethylarsine and trimethylarsine are potent genotoxins in vitro. Chem Res Toxicol 16:994–1003PubMedCrossRefGoogle Scholar
  2. Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397–419PubMedCrossRefGoogle Scholar
  3. Aposhian HV, Aposhian MM (2006) Arsenic toxicology: five questions. Chem Res Toxicol 19(1):1–15PubMedCrossRefGoogle Scholar
  4. Bu N, Wang HY, Hao WH, Liu X, Xu S, Wu B, Anan Y, Ogra Y, Lou YJ, Naranmandura H (2011) Generation of thioarsenicals is dependent on the enterohepatic circulation in rats. Metallomics 3(10):1064–1073 PubMedCrossRefGoogle Scholar
  5. Calatayud M, Gimeno J, Velez D, Devesa V, Montoro R (2010) Characterization of the intestinal absorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid using the Caco-2 cell line. Chem Res Toxicol 23(3):547–556PubMedCrossRefGoogle Scholar
  6. Challenger F (1945) Biological methylation. Chem Rev 36:315–361CrossRefGoogle Scholar
  7. Chiou HY, Hsueh YM, Hsieh LL, Hsu LI, Hsu YH, Hsieh FI, Wei ML, Chen HC, Yang HT, Leu LC, Chu TH, ChenWu C, Yang MH, Chen CJ (1997) Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res, Rev Mutat Res 386(3):197–207CrossRefGoogle Scholar
  8. Chowdhury UK, Zakharyan RA, Hernandez A, Avram MD, Kopplin MJ, Aposhian HV (2006) Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol Appl Pharmacol 216(3):446–457PubMedCrossRefGoogle Scholar
  9. Clarke SD, Romsos DR, Tsai AC, Belo PS, Bergen WG, Leveille GA (1976) Studies of the effect of dietary cholesterol on hepatic protein synthesis, reduced glutathione levels and serine dehydratase activity in the rat. J Nutr 106(1):94–102PubMedGoogle Scholar
  10. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764CrossRefGoogle Scholar
  11. Cullen WR, McBride BC, Reglinski J (1984) The reaction of methylarsenicals with thiols—some biological implications. J Inorg Biochem 21(3):179–194CrossRefGoogle Scholar
  12. Cullen WR, McBride BC, Manji H, Pickett AW, Reglinski J (1989) The metabolism of methylarsine oxide and sulfide. Appl Organomet Chem 3:71–78CrossRefGoogle Scholar
  13. Dhankher OP (2005) Arsenic metabolism in plants: an inside story. New Phytol 168(3):503–505PubMedCrossRefGoogle Scholar
  14. Diaz-Bone RA, Hollmann M, Wuerfel O, Pieper D (2009) Analysis of volatile arsenic compounds formed by intestinal microorganisms: rapid identification of new metabolic products by use of simultaneous EI-MS and ICP-MS detection after gas chromatographic separation. J Anal At Spectrom 24(6):808–814CrossRefGoogle Scholar
  15. Dopp E, Hartmann LM, Florea AM, Rettenmeier AW, Hirner AV (2004) Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit Rev Toxicol 34(3):301–333PubMedCrossRefGoogle Scholar
  16. Drobna Z, Waters SB, Devesa V, Harmon AW, Thomas DJ, Styblo M (2005) Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase. Toxicol Appl Pharmacol 207(2):147–159PubMedCrossRefGoogle Scholar
  17. Drobna Z, Xing W, Thomas DJ, Styblo M (2006) shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells. Chem Res Toxicol 19(7):894–898PubMedCrossRefGoogle Scholar
  18. Drobna Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K, Styblo M, Le Chris X, Creed JT, Maeda N, Hughes MF, Thomas DJ (2009) Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol 22(10):1713–1720PubMedCrossRefGoogle Scholar
  19. Drobna Z, Walton FS, Paul DS, Xing W, Thomas DJ, Styblo M (2010) Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 84(1):3–16PubMedCrossRefGoogle Scholar
  20. Eblin KE, Bowen ME, Cromey DW, Bredfeldt TG, Mash EA, Lau SS, Gandolfi AJ (2006) Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217(1):7–14PubMedCrossRefGoogle Scholar
  21. Edmonds JS, Morita M, Shibata Y (1987) Isolation and identification of arsenic-containing ribofuranosides and inorganic arsenic from Japanese edible seaweed Hijikia fusiforme. J Chem Soc, Perkin Trans 1:577–580CrossRefGoogle Scholar
  22. Engstrom KS, Broberg K, Concha G, Nermell B, Warholm M, Vahter M (2007) Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect 115(4):599–605CrossRefGoogle Scholar
  23. Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328(5982):1123–1127PubMedCrossRefGoogle Scholar
  24. Fisher JC, Wallschlager D, Planer-Friedrich B, Hollibaugh JT (2008) A new role for sulfur in arsenic cycling. Environ Sci Technol 42(1):81–85PubMedCrossRefGoogle Scholar
  25. Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN (2007) High-throughput identification of catalytic redox-active cysteine residues. Science 315(5810):387–389PubMedCrossRefGoogle Scholar
  26. Francesconi KA, Tanggaar R, McKenzie CJ, Goessler W (2002) Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 48(1):92–101PubMedGoogle Scholar
  27. Fricke MW, Zeller M, Sun H, Lai VW, Cullen WR, Shoemaker JA, Witkowski MR, Creed JT (2005) Chromatographic separation and identification of products from the reaction of dimethylarsinic acid with hydrogen sulfide. Chem Res Toxicol 18(12):1821–1829PubMedCrossRefGoogle Scholar
  28. Geoffroy MC, Jaffray EG, Walker KJ, Hay RT (2010) Arsenic-induced, SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell 21(23):4227–4239PubMedCrossRefGoogle Scholar
  29. Gregus Z, Nemeti B (2002) Purine nucleoside phosphorylase as a cytosolic arsenate reductase. Toxicol Sci 70:13–19PubMedCrossRefGoogle Scholar
  30. Gurr JR, Bau DT, Liu F, Lynn S, Jan KY (1999) Dithiothreitol enhances arsenic trioxide-induced apoptosis in NB4 cells. Mol Pharmacol 56(1):102–109PubMedGoogle Scholar
  31. Han MJ, Meng X, Lippincott L (2007) Determination of configuration of arsenite-glutathione complexes using ECSTM. Toxicol Lett 175(1–3):57–63PubMedCrossRefGoogle Scholar
  32. Hansen HR, Raab A, Jaspars M, Milne BF, Feldmann J (2004) Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMA(III)] and identified as a natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity. Chem Res Toxicol 17(8):1086–1091PubMedCrossRefGoogle Scholar
  33. Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40(1):138–145PubMedCrossRefGoogle Scholar
  34. Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79(4):183–191PubMedCrossRefGoogle Scholar
  35. Healy SM, Wildfang E, Zakharyan RA, Aposhian HV (1999) Diversity of inorganic arsenite biotransformation. Biol Trace Elem Res 68(3):249–266PubMedCrossRefGoogle Scholar
  36. Hirano S, Kobayashi Y (2006) Cytotoxic effects of S-(dimethylarsino)-glutathione: a putative intermediate metabolite of inorganic arsenicals. Toxicology 227(1–2):45–52PubMedCrossRefGoogle Scholar
  37. Hirano S, Cui X, Li S, Kanno S, Hayakawa T, Shraim A (2003) Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenics in rat microvessel endothelial cells. Arch Toxicol 77:305–312PubMedGoogle Scholar
  38. Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A (2004) The accumulation and toxicity of methylated arsenicals in endothelial cells: important role of thiol compounds. Toxicol Appl Pharmacol 198:458–467PubMedCrossRefGoogle Scholar
  39. International-Council-on-Mining-and-Metals (2007) Gastrointestinal uptake and absorption, and catalogue of toxicokinetic models. Health risk assessment guidance for metals. Fact sheet 04. http://www.icmm.com/page/1213/health-risk-assessment-guidance-for-metals-herag
  40. IPCS (2001) Arsenic and arsenic compounds, vol 224. World Health Organization, GenevaGoogle Scholar
  41. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078PubMedCrossRefGoogle Scholar
  42. Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275(43):33404–33408PubMedCrossRefGoogle Scholar
  43. Kala SV, Kala G, Prater CI, Sartorelli AC, Lieberman MW (2004) Formation and urinary excretion of arsenic triglutathione and methylarsenic diglutathione. Chem Res Toxicol 17(2):243–249PubMedCrossRefGoogle Scholar
  44. Kato K, Yamanaka K, Hasegawa A, Okada S (2003) Active arsenic species produced by GSH-dependent reduction of dimethylarsinic acid cause micronuclei formation in peripheral reticulocytes of mice. Mutat Res 539(1–2):55–63PubMedGoogle Scholar
  45. Kenyon EM, Del Razo LM, Hughes MF (2005) Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in mice following acute oral administration of arsenate. Toxicol Sci 85(1):468–475PubMedCrossRefGoogle Scholar
  46. Kitchin KT, Wallace K (2005) Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-alpha. Toxicol Appl Pharmacol 206(1):66–72PubMedCrossRefGoogle Scholar
  47. Kitchin KT, Wallace K (2006a) Arsenite binding to synthetic peptides: the effect of increasing length between two cysteines. J Biochem Mol Toxicol 20(1):35–38PubMedCrossRefGoogle Scholar
  48. Kitchin KT, Wallace K (2006b) Dissociation of arsenite-peptide complexes: triphasic nature, rate constants, half-lives, and biological importance. J Biochem Mol Toxicol 20(1):48–56PubMedCrossRefGoogle Scholar
  49. Kobayashi Y, Hirano S (2008) Effects of endogenous hydrogen peroxide and glutathione on the stability of arsenic metabolites in rat bile. Toxicol Appl Pharmacol 232(1):33–40PubMedCrossRefGoogle Scholar
  50. Kobayashi Y, Cui X, Hirano S (2005) Stability of arsenic metabolites, arsenic triglutathione [As(GS)(3)] and methylarsenic diglutathione [CH(3)As(GS)(2)], in rat bile. Toxicology 211(1–2):115–123PubMedCrossRefGoogle Scholar
  51. Komissarova EV, Li P, Uddin AN, Chen X, Nadas A, Rossman TG (2008) Gene expression levels in normal human lymphoblasts with variable sensitivities to arsenite: identification of GGT1 and NFKBIE expression levels as possible biomarkers of susceptibility. Toxicol Appl Pharmacol 226(2):199–205PubMedCrossRefGoogle Scholar
  52. Kubachka KM, Kohan MC, Herbin-Davis K, Creed JT, Thomas DJ (2009) Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS. Toxicol Appl Pharmacol 239(2):137–143PubMedCrossRefGoogle Scholar
  53. Kumar P, Gao Q, Ning Y, Wang Z, Krebsbach PH, Polverini PJ (2008) Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol Cancer Ther 7(7):2060–2069PubMedCrossRefGoogle Scholar
  54. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10(5):547–555PubMedCrossRefGoogle Scholar
  55. Leslie EM, Haimeur A, Waalkes MP (2004) Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J Biol Chem 279(31):32700–32708PubMedCrossRefGoogle Scholar
  56. Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ (2002) A novel S-adenosyl-l-methionine:arsenic (III) methyltransferase from rat liver cytosol. J Biol Chem 277:10795–10803PubMedCrossRefGoogle Scholar
  57. Liu J, Chen H, Miller DS, Saavedra JE, Keefer LK, Johnson DR, Klaassen CD, Waalkes MP (2001a) Overexpression of glutathione S-transferase II and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60(2):302–309PubMedGoogle Scholar
  58. Liu J, Kadiiska MB, Liu Y, Lu T, Qu W, Waalkes MP (2001b) Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci 61(2):314–320PubMedCrossRefGoogle Scholar
  59. Liu J, Liu Y, Powell DA, Waalkes MP, Klaassen CD (2002) Multidrug-resistance mdr1a/1b double knockout mice are more sensitive than wild type mice to acute arsenic toxicity, with higher arsenic accumulation in tissues. Toxicology 170(1–2):55–62PubMedCrossRefGoogle Scholar
  60. Liu Z, Carbrey JM, Agre P, Rosen BP (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316(4):1178–1185PubMedCrossRefGoogle Scholar
  61. Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351(2):424–430PubMedCrossRefGoogle Scholar
  62. Lu M, Wang H, Li XF, Arnold LL, Cohen SM, Le XC (2007) Binding of dimethylarsinous Acid to Cys-13alpha of rat hemoglobin is responsible for the retention of arsenic in rat blood. Chem Res Toxicol 20(1):27–37PubMedCrossRefGoogle Scholar
  63. Mao JH, Sun XY, Liu JX, Zhang QY, Liu P, Huang QH, Li KK, Chen Q, Chen Z, Chen SJ (2010) As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc Natl Acad Sci USA 107(50):21683–21688PubMedCrossRefGoogle Scholar
  64. Marnell LL, Garcia-Vargas GG, Chowdhury UK, Zakharyan RA, Walsh B, Avram MD, Kopplin MJ, Cebrian ME, Silbergeld EK, Aposhian HV (2003) Polymorphisms in the human monomethylarsonic acid (MMA V) reductase/hGSTO1 gene and changes in urinary arsenic profiles. Chem Res Toxicol 16(12):1507–1513PubMedCrossRefGoogle Scholar
  65. Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99(12):920–928PubMedCrossRefGoogle Scholar
  66. Mizumura A, Watanabe T, Kobayashi Y, Hirano S (2010) Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells. Toxicol Appl Pharmacol 242(2):119–125PubMedCrossRefGoogle Scholar
  67. Munro KL, Mariana A, Klavins AI, Foster AJ, Lai B, Vogt S, Cai Z, Harris HH, Dillon CT (2008) Microprobe XRF mapping and XAS investigations of the intracellular metabolism of arsenic for understanding arsenic-induced toxicity. Chem Res Toxicol 21(9):1760–1769PubMedCrossRefGoogle Scholar
  68. Nakamura K, Yoshio H, Ling P, Yamauchi H (2009) Methyl transfer from a hydrophobic vitamin B-12 derivative to arsenic trioxide. J Organomet Chem 694(6):916–921CrossRefGoogle Scholar
  69. Naranmandura H, Suzuki KT (2008) Formation of dimethylthioarsenicals in red blood cells. Toxicol Appl Pharmacol 227(3):390–399PubMedCrossRefGoogle Scholar
  70. Naranmandura H, Suzuki N, Suzuki KT (2006) Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol 19(8):1010–1018PubMedCrossRefGoogle Scholar
  71. Naranmandura H, Carew MW, Xu S, Lee J, Leslie EM, Weinfeld M, Le XC (2011) Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chem Res Toxicol 24(9):1586–1596PubMedCrossRefGoogle Scholar
  72. Ochi T, Kaise T, Oya Ohta Y (1994) Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells. Experientia 50(2):115–120PubMedCrossRefGoogle Scholar
  73. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300(5621):939–944PubMedCrossRefGoogle Scholar
  74. Ortiz JG, Opoka R, Kane D, Cartwright IL (2009) Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase. Toxicol Sci 107(2):416–426PubMedCrossRefGoogle Scholar
  75. Percy AJ, Gailer J (2008) Methylated trivalent arsenic-glutathione complexes are more stable than their arsenite analog. Bioinorg Chem Appl 539082Google Scholar
  76. Phillips DJH (1990) Arsenic in aquatic organisms—a review, emphasizing chemical speciation. Aquat Toxicol 16(3):151–186CrossRefGoogle Scholar
  77. Pinyayev TS, Kohan MJ, Herbin-Davis K, Creed JT, Thomas DJ (2011) Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chem Res Toxicol 24(4):475–477PubMedCrossRefGoogle Scholar
  78. Raab A, Wright SH, Jaspars M, Meharg AA, Feldmann J (2007) Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed Engl 46(15):2594–2597PubMedCrossRefGoogle Scholar
  79. Rabieh S, Hirner AV, Matschullat J (2008) Determination of arsenic species in human urine using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). J Anal At Spectrom 23(4):544–549CrossRefGoogle Scholar
  80. Raml R, Rumpler A, Goessler W, Vahter M, Li L, Ochi T, Francesconi KA (2007) Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicol Appl Pharmacol 222(3):374–380PubMedCrossRefGoogle Scholar
  81. Raml R, Raber G, Rumpler A, Bauernhofer T, Goessler W, Francesconi KA (2009) Individual variability in the human metabolism of an arsenic-containing carbohydrate, 2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside, a naturally occurring arsenical in seafood. Chem Res Toxicol 22(9):1534–1540PubMedCrossRefGoogle Scholar
  82. Rappa G, Lorico A, Flavell RA, Sartorelli AC (1997) Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res 57(23):5232–5237PubMedGoogle Scholar
  83. Ren X, Aleshin M, Jo WJ, Dills R, Kalman DA, Vulpe CD, Smith MT, Zhang L (2011) Involvement of N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) in arsenic biomethylation and its role in arsenic-induced toxicity. Environ Health Perspect 119(6):771–777PubMedCrossRefGoogle Scholar
  84. Sakurai T, Qu W, Sakurai MH, Waalkes MP (2002) A major human arsenic metabolite, dimethylarsinic acid, requires reduced glutathione to induce apoptosis. Chem Res Toxicol 15(5):629–637PubMedCrossRefGoogle Scholar
  85. Schmeisser E, Goessler W, Francesconi KA (2006) Human metabolism of arsenolipids present in cod liver. Anal Bioanal Chem 385(2):367–376PubMedCrossRefGoogle Scholar
  86. Scott N, Hatlelid KM, MacKenzie NE, Carter DE (1993) Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6(1):102–106PubMedCrossRefGoogle Scholar
  87. Shiobara Y, Ogra Y, Suzuki KT (2001) Animal species difference in the uptake of dimethylarsinous acid (DMA(III)) by red blood cells. Chem Res Toxicol 14(10):1446–1452PubMedCrossRefGoogle Scholar
  88. Shraim A, Cui X, Li S, Ng JC, Wang HP, Jin YL, Liu YC, Guo L, Li DS, Wang SQ, Zhang RZ, Hirano S (2003) Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou, PR China. Toxicol Lett 137(1–2):35–48PubMedCrossRefGoogle Scholar
  89. Song X, Geng Z, Li X, Hu X, Bian N, Zhang X, Wang Z (2010) New insights into the mechanism of arsenite methylation with the recombinant human arsenic (+3) methyltransferase (hAS3MT). Biochimie 92(10):1397–1406PubMedCrossRefGoogle Scholar
  90. Spuches AM, Kruszyna HG, Rich AM, Wilcox DE (2005) Thermodynamics of the As(III)-thiol interaction: arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands. Inorg Chem 44(8):2964–2972PubMedCrossRefGoogle Scholar
  91. Stamatelos SK, Brinkerhoff CJ, Isukapalli SS, Georgopoulos PG (2011) Mathematical model of uptake and metabolism of arsenic(III) in human hepatocytes—incorporation of cellular antioxidant response and threshold-dependent behavior. BMC Syst Biol 5:16PubMedCrossRefGoogle Scholar
  92. Styblo M, Del Razo LM, LeCluyse EL, Hamilton GA, Wang C, Cullen WR, Thomas DJ (1999) Metabolism of arsenic in primary cultures of human and rat hepatocytes. Chem Res Toxicol 12(7):560–565PubMedCrossRefGoogle Scholar
  93. Suner MA, Devesa V, Munoz O, Velez D, Montoro R (2001) Application of column switching in high-performance liquid chromatography with on-line thermo-oxidation and detection by HG-AAS and HG-AFS for the analysis of organoarsenical species in seafood samples. J Anal At Spectrom 16(4):390–397CrossRefGoogle Scholar
  94. Suzuki KT, Mandal BK, Katagiri A, Sakuma Y, Kawakami A, Ogra Y, Yamaguchi K, Sei Y, Yamanaka K, Anzai K, Ohmichi M, Takayama H, Aimi N (2004) Dimethylthioarsenicals as arsenic metabolites and their chemical preparations. Chem Res Toxicol 17(7):914–921PubMedCrossRefGoogle Scholar
  95. Suzuki KT, Iwata K, Naranmandura H, Suzuki N (2007) Metabolic differences between two dimethylthioarsenicals in rats. Toxicol Appl Pharmacol 218(2):166–173PubMedCrossRefGoogle Scholar
  96. Suzuki N, Naranmandura H, Hirano S, Suzuki KT (2008) Theoretical calculations and reaction analysis on the interaction of pentavalent thioarsenicals with biorelevant thiol compounds. Chem Res Toxicol 21(2):550–553PubMedCrossRefGoogle Scholar
  97. Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5):538–546PubMedCrossRefGoogle Scholar
  98. Thomas DJ (2009) Unraveling arsenic–glutathione connections. Toxicol Sci 107(2):309–311PubMedCrossRefGoogle Scholar
  99. Vahter M, Couch R, Nermell B, Nilsson R (1995) Lack of methylation of inorganic arsenic in the chimpanzee. Toxicol Appl Pharmacol 133(2):262–268PubMedCrossRefGoogle Scholar
  100. Van de Wiele T, Gallawa CM, Kubachka KM, Creed JT, Basta N, Dayton EA, Whitacre S, Du Laing G, Bradham K (2010) Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect 118(7):1004–1009PubMedCrossRefGoogle Scholar
  101. Vanhoefer U, Cao S, Minderman H, Toth K, Skenderis BS 2nd, Slovak ML, Rustum YM (1996) d, l-buthionine-(S, R)-sulfoximine potentiates in vivo the therapeutic efficacy of doxorubicin against multidrug resistance protein-expressing tumors. Clin Cancer Res 2(12):1961–1968PubMedGoogle Scholar
  102. Villa-Bellosta R, Sorribar V (2010) Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicol Appl Pharmacol 247(1):36–40PubMedCrossRefGoogle Scholar
  103. Watanabe T, Ohta Y, Mizumura A, Kobayashi Y, Hirano S (2011) Analysis of arsenic metabolites in HepG2 and AS3MT-transfected cells. Arch Toxicol 85(6):577–588PubMedCrossRefGoogle Scholar
  104. Wei M, Wanibuchi H, Yamamoto S, Li W, Fukushima S (1999) Urinary bladder carcinogenicity of dimethylarsinic acid in male F344 rats. Carcinogenesis 20(9):1873–1876PubMedCrossRefGoogle Scholar
  105. Yamanaka K, Hoshino M, Okamoto M, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168(1):58–64PubMedCrossRefGoogle Scholar
  106. Yathavakilla SKV, Fricke M, Creed PA, Heitkemper DT, Shockey NV, Schwegel C, Caruso JA, Creed JT (2008) Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix. Anal Chem 80(3):775–782PubMedCrossRefGoogle Scholar
  107. Yehiayan L, Pattabiraman M, Kavallieratos K, Wang XT, Boise LH, Cai Y (2009) Speciation, formation, stability and analytical challenges of human arsenic metabolites. J Anal At Spectrom 24(10):1397–1405PubMedCrossRefGoogle Scholar
  108. Yehiayan L, Membreno N, Matulis SM, Boise LH, Cai Y (2011) Extraction tool and matrix effects on arsenic speciation analysis in cell lines. Anal Chim Acta 699(2):187–192PubMedCrossRefGoogle Scholar
  109. Yu L, Kalla K, Guthrie E, Vidrine A, Klimecki WT (2003) Genetic variation in genes associated with arsenic metabolism: glutathione s-transferase omega 1–1 and purine nucleoside phosphorylase polymorphisms in European and indigenous americans. Environ Health Perspect 111(11):1421–1427PubMedCrossRefGoogle Scholar
  110. Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42(9):3201–3206PubMedCrossRefGoogle Scholar
  111. Zakharyan RA, Aposhian HV (1999) Arsenite methylation by methylvitamin B-12 and glutathione does not require an enzyme. Toxicol Appl Pharm 154(3):287–291CrossRefGoogle Scholar
  112. Zakharyan RA, Wildfang E, Aposhian HV (1996) Enzymatic methylation of arsenic compounds. Toxicol Appl Pharmacol 140(1):77–84CrossRefGoogle Scholar
  113. Zakharyan RA, Sampayo Reyes A, Healy SM, Tsaprailis G, Board PG, Liebler DC, Aposhian HV (2001) Human monomethylarsonic acid (MMAV) reductase is a member of the glutathione-S-transferase superfamily. Chem Res Toxicol 14:1051–1057PubMedCrossRefGoogle Scholar
  114. Zakharyan RA, Tsaprailis G, Chowdhury UK, Hernandez A, Aposhian HV (2005) Interactions of sodium selenite, glutathione, arsenic species, and omega class human glutathione transferase. Chem Res Toxicol 18(8):1287–1295PubMedCrossRefGoogle Scholar
  115. Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ, Chen Z (2010) Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328(5975):240–243PubMedCrossRefGoogle Scholar
  116. Zhou X, Sun X, Cooper KL, Wang F, Liu KJ, Hudson LG (2011) Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J Biol Chem 286(26):22855–22863PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesChiba UniversityChuoJapan
  2. 2.Research Center for Environmental RiskNational Institute for Environmental StudiesTsukubaJapan

Personalised recommendations