Archives of Toxicology

, Volume 86, Issue 12, pp 1809–1827 | Cite as

Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress

  • Andreja TrpkovicEmail author
  • Biljana Todorovic-Markovic
  • Vladimir TrajkovicEmail author
Review Article


The fullerene C60, due to the physicochemical properties of its spherical cage-like molecule build exclusively from carbon atoms, is able to both scavenge and generate reactive oxygen species. While this unique dual property could be exploited in biomedicine, the low water solubility of C60 hampers the investigation of its behavior in biological systems. The C60 can be brought into water by solvent extraction, by complexation with surfactants/polymers, or by long-term stirring, yielding pristine (unmodified) fullerene suspensions. On the other hand, a modification of the C60 core by the attachment of various functional groups results in the formation of water-soluble fullerene derivatives. Assessment of toxicity associated with C60 preparations is of pivotal importance for their biomedical application as cytoprotective (antioxidant), cytotoxic (anticancer), or drug delivery agents. Moreover, the widespread industrial utilization of fullerenes may also have implications for human health. However, the alterations in physicochemical properties imposed by the utilization of different methods for C60 solubilization profoundly influence toxicological effects of fullerene preparations, thus making the analysis of their potential therapeutic and environmental toxicity difficult. This review provides a comprehensive evaluation of the in vitro and in vivo toxicity of fullerenes, focusing on the comparison between pristine and derivatized C60 preparations and the mechanisms of their toxicity to mammalian cells and tissues.


Fullerenes Cytotoxicity Genotoxicity Oxidative stress In vitro In vivo 



This work was supported by the Ministry of Education and Science of the Republic of Serbia (grants number 41025 and 172003).


  1. Aoshima H, Saitoh Y, Ito S, Yamana S, Miwa N (2009) Safety evaluation of highly purified fullerenes (HPFs): based on screening of eye and skin damage. J Toxicol Sci 34:555–562PubMedCrossRefGoogle Scholar
  2. Aoshima H, Yamana S, Nakamura S, Mashino T (2010) Biological safety of water-soluble fullerenes evaluated using tests for genotoxicity, phototoxicity, and pro-oxidant activity. J Toxicol Sci 35:401–409PubMedCrossRefGoogle Scholar
  3. Arbogast JW, Darmanyan AP, Foote CS, Diederich FN, Whetten RL, Rubin Y, Alvarez MM, Samir J, Anz SJ (1991) Photophysical properties of C60. J Phys Chem 95:11–12CrossRefGoogle Scholar
  4. Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SA, Christensen FM (2010) Review of fullerene toxicity and exposure—appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473PubMedCrossRefGoogle Scholar
  5. Babynin EV, Nuretdinov IA, Cubskaya VP, Barabanshchikov BI (2002) Study of mutagenetic activity of fullerene and some of its derivatives using his + reversions of Salmonella typhimurium as an example. Russian J Genet 38:453–457CrossRefGoogle Scholar
  6. Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR (2007) Inactivation of bacteriophages via photosensitizationof fullerol nanoparticles. Environ Sci Technol 41:6627–6632PubMedCrossRefGoogle Scholar
  7. Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, Pierce JT, Dill JA (2008) Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 101:122–131PubMedCrossRefGoogle Scholar
  8. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2:639–649PubMedGoogle Scholar
  9. Bensasson RV, Berberan-Santos MN, Brettreich M, Frederiksen J, Göttinger H, Hirsch A, Land EJ, Leach S, McGarvey DJ, Schönberger H, Schröder C (2001) Triplet state properties of malonic acid C60 derivatives C60[C(COOR)2]n; R = H, Et; n = 1–6. Phys Chem Chem Phys 3:4679–4683CrossRefGoogle Scholar
  10. Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, Mitra S, Witzmann FA (2011) Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 5:354–371PubMedCrossRefGoogle Scholar
  11. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923PubMedCrossRefGoogle Scholar
  12. Bosi S, Feruglio L, Da Ros T, Spalluto G, Gregoretti B, Terdoslavich M, Decorti G, Passamonti S, Moro S, Prato M (2004) Hemolytic effects of water-soluble fullerene derivatives. J Med Chem 47:6711–6715PubMedCrossRefGoogle Scholar
  13. Bottasso O, Docena G, Stanford JL, Grange JM (2009) Chronic inflammation as a manifestation of defects in immunoregulatory networks: implications for novel therapies based on microbial products. Inflammopharmacology 17:193–203PubMedCrossRefGoogle Scholar
  14. Briviba K, Klotz LO, Sies H (1997) Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 378:1259–1265PubMedGoogle Scholar
  15. Brunet L, Lyon DY, Hotze EM, Alvarez PJ, Wiesner MR (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43:4355–4360PubMedCrossRefGoogle Scholar
  16. Bullard Dillard R, Creek KE, Scrivens WA, Tour JM (1996) Tissue sites of uptake of 14C-labeled C60. Bioorg Chem 24:376–385CrossRefGoogle Scholar
  17. Buseck PR, Tsipursky SJ, Hettich R (1992) Fullerenes from the geologic environment. Science 257:215–217PubMedCrossRefGoogle Scholar
  18. Chen HH, Yu C, Ueng TH, Chen S, Chen BJ, Huang KJ, Chiang LY (1998) Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol 26:143–151PubMedCrossRefGoogle Scholar
  19. Chen F, Eriksson P, Hansson GK, Herzfeld I, Klein M, Hansson LO, Valen G (2005) Expression of matrix metalloproteinase 9 and its regulators in the unstable coronary atherosclerotic plaque. Int J Mol Med 15:57–65PubMedGoogle Scholar
  20. Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM (2001) De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol 12:973–982PubMedGoogle Scholar
  21. Chirico F, Fumelli C, Marconi A, Tinari A, Straface E, Malorni W, Pellicciari R, Pincelli C (2007) Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway. Exp Dermatol 16:429–436PubMedCrossRefGoogle Scholar
  22. Da Ros T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem Comm 8:663–669CrossRefGoogle Scholar
  23. Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770PubMedCrossRefGoogle Scholar
  24. Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40:7394–7401PubMedCrossRefGoogle Scholar
  25. Diederich F, Ettl R, Rubin Y, Whetten RL, Beck R, Alvarez M, Anz S, Sensharma D, Wudl F, Khemani KC, Koch A (1991) The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5 h-C70. Science 252:548–551PubMedCrossRefGoogle Scholar
  26. Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3:129–135PubMedCrossRefGoogle Scholar
  27. Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7:243–246PubMedCrossRefGoogle Scholar
  28. Duncan LK, Jinschek JR, Vikesland PJ (2007) C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge. Environ Sci Technol 42:173–178CrossRefGoogle Scholar
  29. Ehrich M, Van Tassell R, Li Y, Zhou Z, Kepley CL (2011) Fullerene antioxidants decrease organophosphate-induced acetylcholinesterase inhibition in vitro. Toxicol In Vitro 25:301–307PubMedCrossRefGoogle Scholar
  30. Ema M, Tanaka J, Kobayashi N, Naya M, Endoh S, Maru J, Hosoi M, Nagai M, Nakajima M, Hayashi M, Nakanishi J (2012) Genotoxicity evaluation of fullerene C60 nanoparticles in a comet assay using lung cells of intratracheally instilled rats. Regul Toxicol Pharmacol 62:419–424PubMedCrossRefGoogle Scholar
  31. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119PubMedCrossRefGoogle Scholar
  32. Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117:703–708PubMedGoogle Scholar
  33. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316PubMedCrossRefGoogle Scholar
  34. Fujita K, Morimoto Y, Ogami A, Myojyo T, Tanaka I, Shimada M, Wang WN, Endoh S, Uchida K, Nakazato T, Yamamoto K, Fukui H, Horie M, Yoshida Y, Iwahashi H, Nakanishi J (2009) Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology 258:47–55PubMedCrossRefGoogle Scholar
  35. Gelderman MP, Simakova O, Clogston JD, Patri AK, Siddiqui SF, Vostal AC, Simak J (2008) Adverse effects of fullerenes on endothelial cells: fullerenol C60(OH)24 induced tissue factor and ICAM-I membrane expression and apoptosis in vitro. Int J Nanomedicine 3:59–68PubMedGoogle Scholar
  36. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585PubMedCrossRefGoogle Scholar
  37. Greim H, Norppa H (2010) Genotoxicity testing of nanomaterials—conclusions. Nanotoxicology 4:421–424PubMedCrossRefGoogle Scholar
  38. Guldi DM, Prato M (2000) Excited-state properties of C60 fullerene derivatives. Acc Chem Res 33:695–703PubMedCrossRefGoogle Scholar
  39. Guo T, Diener MD, Chai Y, Alford MJ, Haufler RE, McClure SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Uranium stabilization of C28: a tetravalent fullerene. Science 257:1661–1664PubMedCrossRefGoogle Scholar
  40. Hamano T, Okuda K, Mashino T, Hirobe M, Arakane K, Ryu A, Mashiko S, Nagano T (1997) Singlet oxygen production from fullerene derivatives: effect of sequential functionalization of the fullerene core. Chem Commun 1:21–22CrossRefGoogle Scholar
  41. Han B, Karim MN (2008) Cytotoxicity of aggregated fullerene C60 particles on CHO and MDCK cells. Scanning 30:213–220PubMedCrossRefGoogle Scholar
  42. Harhaji L, Isakovic A, Raicevic N, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Markovic I, Trajkovic V (2007) Multiple mechanisms underlying the anticancer action of nanocrystalline fullerene. Eur J Pharmacol 568:89–98PubMedCrossRefGoogle Scholar
  43. Harhaji L, Isakovic A, Vucicevic L, Janjetovic K, Misirkic M, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Nikolic Z, Trajkovic V (2008) Modulation of tumor necrosis factor-mediated cell death by fullerenes. Pharm Res 25:1365–1376PubMedCrossRefGoogle Scholar
  44. Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS (2007) Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 115:1059–1065PubMedCrossRefGoogle Scholar
  45. Henry TB, Petersen EJ, Compton RN (2011) Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports. Curr Opin Biotechnol 22:533–537PubMedCrossRefGoogle Scholar
  46. Hotze EM, Labille J, Alvarez P, Wiesner MR (2008) Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water. Environ Sci Technol 42:4175–4180PubMedCrossRefGoogle Scholar
  47. Huczko A, Lange H, Calko E (1999) Fullerenes: experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci Technol 7:935–939CrossRefGoogle Scholar
  48. Injac R, Boskovic M, Perse M, Koprivec-Furlan E, Cerar A, Djordjevic A, Strukelj B (2008) Acute doxorubicin nephrotoxicity in rats with malignant neoplasm can be successfully treated with fullerenol C60(OH)24 via suppression of oxidative stress. Pharmacol Rep 60:742–749PubMedGoogle Scholar
  49. Injac R, Perse M, Cerne M, Potocnik N, Radic N, Govedarica B, Djordjevic A, Cerar A, Strukelj B (2009) Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials 30:1184–1196PubMedCrossRefGoogle Scholar
  50. Isakovic A, Markovic Z, Nikolic N, Todorovic-Markovic B, Vranjes-Djuric S, Harhaji L, Raicevic N, Romcevic N, Vasiljevic-Radovic D, Dramicanin M, Trajkovic V (2006a) Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation. Biomaterials 27:5049–5058PubMedCrossRefGoogle Scholar
  51. Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V (2006b) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183PubMedCrossRefGoogle Scholar
  52. Ito S, Itoga K, Yamato M, Akamatsu H, Okano T (2010) The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin. Toxicology 267:27–38PubMedCrossRefGoogle Scholar
  53. Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-MutaTM Mouse lung epithelial cells. Environ Mol Mutagen 49:476–487PubMedCrossRefGoogle Scholar
  54. Jacobsen NR, Møller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2PubMedCrossRefGoogle Scholar
  55. Ji ZQ, Sun HF, Wang HF, Xie QY, Liu YF, Wang Z (2006) Biodistribution and tumor uptake of C60(OH)x in mice. J Nanoparticle Res 8:53–63CrossRefGoogle Scholar
  56. Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, Stern ST, McNeil SE (2010) Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249–258PubMedCrossRefGoogle Scholar
  57. Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V (2010) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–182PubMedCrossRefGoogle Scholar
  58. Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H, Mittal JP (1998) Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes. Chem Biol Interact 114:145–159PubMedCrossRefGoogle Scholar
  59. Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61PubMedCrossRefGoogle Scholar
  60. Käsermann F, Kempf C (1997) Photodynamic inactivation of enveloped viruses by buckminsterfullerene. Antiviral Res 34:65–70PubMedCrossRefGoogle Scholar
  61. Kato S, Aoshima H, Saitoh Y, Miwa N (2009a) Biological safety of lipofullerene composed of squalane and fullerene-C60 upon mutagenesis, photocytotoxicity, and permeability into the human skin tissue. Basic Clin Pharmacol Toxicol 104:483–487PubMedCrossRefGoogle Scholar
  62. Kato S, Aoshima H, Saitoh Y, Miwa N (2009b) Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: the antioxidant ability assessed by electron spin resonance method and beta-carotene bleaching assay. Bioorg Med Chem Lett 19:5293–5296PubMedCrossRefGoogle Scholar
  63. Kato S, Aoshima H, Saitoh Y, Miwa N (2010) Fullerene-C60/liposome complex: defensive effects against UVA-induced damages in skin structure, nucleus and collagen type I/IV fibrils, and the permeability into human skin tissue. J Photochem Photobiol B 98:99–105PubMedCrossRefGoogle Scholar
  64. Kolosnjaj J, Szwarc H, Moussa F (2007) Toxicity studies of fullerenes and derivatives. Adv Exp Med Biol 620:168–180PubMedCrossRefGoogle Scholar
  65. Kovochich M, Espinasse B, Auffan M, Hotze EM, Wessel L, Xia T, Nel AE, Wiesner MRR (2009) Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ Sci Technol 43:6378–6384PubMedCrossRefGoogle Scholar
  66. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358CrossRefGoogle Scholar
  67. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  68. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254:1183–1185PubMedCrossRefGoogle Scholar
  69. Leavens TL, Xia XR, Lee HA, Monteiro-Riviere NA, Brooks JD, Riviere JE (2010) Evaluation of perfused porcine skin as a model system to quantitate tissue distribution of fullerene nanoparticles. Toxicol Lett 197:1–6PubMedCrossRefGoogle Scholar
  70. Lee YT, Chiang LY, Chen WJ, Hsu HC (2000) Water-soluble hexasulfobutyl[60]fullerene inhibit low-density lipoprotein oxidation in aqueous and lipophilic phases. Proc Soc Exp Biol Med 224:69–75PubMedCrossRefGoogle Scholar
  71. Lens M (2011) Recent progresses in application of fullerenes in cosmetics. Recent Pat Biotechnol 5:67–73PubMedCrossRefGoogle Scholar
  72. Li W, Chen C, Ye C, Wei T, Zhao Y, Lao F, Chen Z, Meng H, Gao Y, Yuan H, Xing G, Zhao F, Chai Z, Zhang X, Yang F, Han D, Tang X, Zhang Y (2008) The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19:145102PubMedCrossRefGoogle Scholar
  73. Lin JC, Wu CH (1999) Surface characterization and platelet adhesion studies on polyurethane surface immobilized with C60. Biomaterials 20:1613–1620PubMedCrossRefGoogle Scholar
  74. Liu J, Ohta S, Sonoda A, Yamada M, Yamamoto M, Nitta N, Murata K, Tabata Y (2007) Preparation of PEG-conjugated fullerene containing Gd3þ ions for photodynamic therapy. J Controlled Release 117:104–110CrossRefGoogle Scholar
  75. Lu LH, Lee YT, Chen HW, Chiang LY, Huang HC (1998) The possible mechanisms of the antiproliferative effect of fullerenol, polyhydroxylated C60, on vascular smooth muscle cells. Br J Pharmacol 123:1097–1102PubMedCrossRefGoogle Scholar
  76. Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85:733–741PubMedCrossRefGoogle Scholar
  77. Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29:3561–3573PubMedCrossRefGoogle Scholar
  78. Markovic Z, Todorovic-Markovic B, Kleut D, Nikolic N, Vranjes-Djuric S, Misirkic M, Vucicevic L, Janjetovic K, Isakovic A, Harhaji L, Babic-Stojic B, Dramicanin M, Trajkovic V (2007) The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28:5437–5448PubMedCrossRefGoogle Scholar
  79. Matsuda S, Matsui S, Shimizu Y, Matsuda T (2011) Genotoxicity of colloidal fullerene C60. Environ Sci Technol 45:4133–4138PubMedCrossRefGoogle Scholar
  80. Metanawin T, Tang T, Chen R, Vernon D, Wang X (2011) Cytotoxicity and photocytotoxicity of structure-defined water-soluble C60/micelle supramolecular nanoparticles. Nanotechnology 22:235604PubMedCrossRefGoogle Scholar
  81. Milic VD, Stankov K, Injac R, Djordjevic A, Srdjenovic B, Govedarica B, Radic N, Simic VD, Strukelj B (2009) Activity of antioxidative enzymes in erythrocytes after a single dose administration of doxorubicin in rats pretreated with fullerenol C60(OH)24. Toxicol Mech Methods 19:24–28PubMedCrossRefGoogle Scholar
  82. Misirkic MS, Todorovic-Markovic BM, Vucicevic LM, Janjetovic KD, Jokanovic VR, Dramicanin MD, Markovic ZM, Trajkovic VS (2009) The protection of cells from nitric oxide-mediated apoptotic death by mechanochemically synthesized fullerene (C60) nanoparticles. Biomaterials 30:2319–2328PubMedCrossRefGoogle Scholar
  83. Mori T, Takada H, Ito S, Matsubayashi K, Miwa N, Sawaguchi T (2006) Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225:48–54PubMedCrossRefGoogle Scholar
  84. Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Nishi K, Kadoya C, Todoroki M, Yamamoto M, Murakami M, Shimada M, Wang WN, Yamamoto K, Fujita K, Endoh S, Uchida K, Shinohara N, Nakanishi J, Tanaka I (2010a) Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies. Part Fibre Toxicol 7:4PubMedCrossRefGoogle Scholar
  85. Morimoto Y, Kobayashi N, Shinohara N, Myojo T, Tanaka I, Nakanishi J (2010b) Hazard assessments of manufactured nanomaterials. J Occup Health 52:325–334PubMedCrossRefGoogle Scholar
  86. Mrdanović J, Solajić S, Bogdanović V, Stankov K, Bogdanović G, Djordjevic A (2009) Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat Res 680:25–30PubMedCrossRefGoogle Scholar
  87. Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR (2007) Photodynamic therapy with fullerenes. Photochem Photobiol Sci 6:1139–1149PubMedCrossRefGoogle Scholar
  88. Nakagawa Y, Suzuki T, Ishii H, Nakae D, Ogata A (2011) Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction. Arch Toxicol 85:1429–1440PubMedCrossRefGoogle Scholar
  89. Naota M, Shimada A, Morita T, Inoue K, Takano H (2009) Translocation pathway of the intratracheally instilled C60 fullerene from the lung into the blood circulation in the mouse: possible association of diffusion and caveolae-mediated pinocytosis. Toxicol Pathol 37:456–462PubMedCrossRefGoogle Scholar
  90. Nielsen GD, Roursgaard M, Jensen KA, Poulsen SS, Larsen ST (2008) In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin Pharmacol Toxicol 103:197–208PubMedCrossRefGoogle Scholar
  91. Nikolić N, Vranjes-Ethurić S, Janković D, Ethokić D, Mirković M, Bibić N, Trajković V (2009) Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnology 20:385102PubMedCrossRefGoogle Scholar
  92. Nitta N, Seko A, Sonoda A, Ohta S, Tanaka T, Takahashi M, Murata K, Takemura S, Sakamoto T, Tabata Y (2008) Is the use of fullerene in photodynamic therapy effective for atherosclerosis? Cardiovasc Intervent Radiol 31:359–366PubMedCrossRefGoogle Scholar
  93. Niwa Y, Iwai N (2006) Genotoxicity in cell lines induced by chronic exposure to water-soluble fullerenes using micronucleus test. Environ Health Prev Med 11:292–297PubMedCrossRefGoogle Scholar
  94. Niwa Y, Iwai N (2007) Nanomaterials induce oxidized low-density lipoprotein cellular uptake in macrophages and platelet aggregation. Circ J 71:437–444PubMedCrossRefGoogle Scholar
  95. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  96. Ogami A, Yamamoto K, Morimoto Y, Fujita K, Hirohashi M, Oyabu T, Myojo T, Nishi K, Kadoya C, Todoroki M, Yamamoto M, Murakami M, Shimada M, Wang WN, Shinohara N, Endoh S, Uchida K, Nakanishi J, Tanaka I (2011) Pathological features of rat lung following inhalation and intratracheal instillation of C60 fullerene. Inhal Toxicol 23:407–416PubMedCrossRefGoogle Scholar
  97. Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol 244:226–233PubMedCrossRefGoogle Scholar
  98. Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine 4:261–275PubMedCrossRefGoogle Scholar
  99. Pickering KD, Wiesner MR (2005) Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environ Sci Technol 39:1359–1365PubMedCrossRefGoogle Scholar
  100. Piskoti C, Yarger J, Zettl A (1998) C36, a new carbon solid. Nature 393:771–774CrossRefGoogle Scholar
  101. Pizzarello S, Huang Y, Becker L, Poreda RJ, Nieman RA, Cooper G, Williams M (2001) The organic content of the Tagish Lake meteorite. Science 293:2236–2239PubMedCrossRefGoogle Scholar
  102. Porter AE, Muller K, Skepper J, Midgley P, Welland M (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater 2:409–419PubMedCrossRefGoogle Scholar
  103. Prat F, Stackow R, Bernstein R, Qian W, Rubin Y, Foote CS (1999) Triplet-state properties and singlet oxygen generation in a homologous series of functionalized fullerene derivatives. J Phys Chem A 103:7230–7235CrossRefGoogle Scholar
  104. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146:882–893PubMedCrossRefGoogle Scholar
  105. Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD (1996) Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 40:2262–2265PubMedGoogle Scholar
  106. Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, Schoenberger H, Hirsch A, Moussa F (2002) Cytotoxicity and photocytotoxicity of a dendritic C60 mono-adduct and a malonic acid C60 tris-adduct on Jurkat cells. J Photochem Photobiol, B 67:157–162CrossRefGoogle Scholar
  107. Ray PD, Huang BW (2012) Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990PubMedCrossRefGoogle Scholar
  108. Roberts JE, Wielgus AR, Boyes WK, Andley U, Chignell C (2008) Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol Appl Pharmacol 228:49–58PubMedCrossRefGoogle Scholar
  109. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  110. Roursgaard M, Poulsen SS, Kepley CL, Hammer M, Nielsen GD, Larsen ST (2008) Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice. Basic Clin Pharmacol Toxicol 103:386–388PubMedCrossRefGoogle Scholar
  111. Rouse JG, Yang J, Barron AR, Monteiro-Riviere NA (2006) Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol In Vitro 20:1313–1320PubMedCrossRefGoogle Scholar
  112. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7:155–160PubMedCrossRefGoogle Scholar
  113. Saathoff JG, Inman AO, Xia XR, Riviere JE, Monteiro-Riviere NA (2011) In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol In Vitro 25:2105–2112PubMedCrossRefGoogle Scholar
  114. Saitoh Y, Miyanishi A, Mizuno H, Kato S, Aoshima H, Kokubo K, Miwa N (2011) Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. J Photochem Photobiol B 102:69–76PubMedCrossRefGoogle Scholar
  115. Satoh M, Takayanagi I (2006) Pharmacological studies on fullerene (C60), a novel carbon allotrope, and its derivatives. Pharmacol Sci 100:513–518CrossRefGoogle Scholar
  116. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharama B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887CrossRefGoogle Scholar
  117. Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595PubMedCrossRefGoogle Scholar
  118. Sayes CM, Marchione AA, Reed KL, Warheit DB (2007) Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–2406PubMedCrossRefGoogle Scholar
  119. Schins RPF, Knaapen AM (2007) Genotoxicity of poorly soluble particles. Inhal Toxicol 19(Suppl 1):189–198PubMedCrossRefGoogle Scholar
  120. Scrivens WA, Tour JM (1994) Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc 116:4517–4518CrossRefGoogle Scholar
  121. Sera N, Tokiwa H, Miyata N (1996) Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17:2163–2169PubMedCrossRefGoogle Scholar
  122. Shinohara N, Matsumoto K, Endoh S, Maru J, Nakanishi J (2009) In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles. Toxicol Lett 191:289–296PubMedCrossRefGoogle Scholar
  123. Shinohara N, Nakazato T, Tamura M, Endoh S, Fukui H, Morimoto Y, Myojo T, Shimada M, Yamamoto K, Tao H, Yoshida Y, Nakanishi J (2010) Clearance kinetics of fullerene C60 nanoparticles from rat lungs after intratracheal C60 instillation and inhalation C60 exposure. Toxicol Sci 118:564–573PubMedCrossRefGoogle Scholar
  124. Simeonova PP, Erdely A (2009) Engineered nanoparticle respiratory exposure and potential risks for cardiovascular toxicity: predictive tests and biomarkers. Inhal Toxicol 21(Suppl 1):68–73PubMedCrossRefGoogle Scholar
  125. Spohn P, Hirsch C, Hasler F, Bruinink A, Krug HF, Wick P (2009) C60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ Pollut 157:1134–1139PubMedCrossRefGoogle Scholar
  126. Su Y, Xu JY, Shen P, Li J, Wang L, Li Q, Li W, Xu GT, Fan C, Huang Q (2010) Cellular uptake and cytotoxic evaluation of fullerenol in different cell lines. Toxicology 269:155–159PubMedCrossRefGoogle Scholar
  127. Tabata Y, Murakami Y, Ikada Y (1997) Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res 88:1108–1116PubMedCrossRefGoogle Scholar
  128. Taroni P, D’Andrea C, Valentini G, Cubeddu R, Hu DN, Roberts JE (2011) Fullerol in human lens and retinal pigment epithelial cells: time domain fluorescence spectroscopy and imaging. Photochem Photobiol Sci 10:904–910PubMedCrossRefGoogle Scholar
  129. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sogiura Y (1993) Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc 115:7918–7919CrossRefGoogle Scholar
  130. Tong J, Zimmerman MC, Li S, Yi X, Luxenhofer R, Jordan R, Kabanov AV (2011) Neuronal uptake and intracellular superoxide scavenging of a fullerene(C60)-poly(2-oxazoline)s nanoformulation. Biomaterials 32:3654–3665PubMedCrossRefGoogle Scholar
  131. Torres VM, Posa M, Srdjenovic B, Simplício AL (2011) Solubilization of fullerene C60 in micellar solutions of different solubilizers. Colloids Surf B Biointerfaces 82:46–53PubMedCrossRefGoogle Scholar
  132. Totsuka Y, Higuchi T, Imai T, Nishikawa A, Nohmi T, Kato T, Masuda S, Kinae N, Hiyoshi K, Ogo S, Kawanishi M, Yagi T, Ichinose T, Fukumori N, Watanabe M, Sugimura T, Wakabayashi K (2009) Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part Fibre Toxicol 6:23PubMedCrossRefGoogle Scholar
  133. Trpkovic A, Todorovic-Markovic B, Kleut D, Misirkic M, Janjetovic K, Vucicevic L, Pantovic A, Jovanovic S, Dramicanin M, Markovic Z, Trajkovic V (2010) Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles. Nanotechnology 21:375102PubMedCrossRefGoogle Scholar
  134. Tsumoto H, Kawahara S, Fujisawa Y, Suzuki T, Nakagawa H, Kohda K, Miyata N (2010) Syntheses of water-soluble [60]fullerene derivatives and their enhancing effect on neurite outgrowth in NGF-treated PC12 cells. Bioorg Med Chem Lett 20:1948–1952PubMedCrossRefGoogle Scholar
  135. Ueng TH, Kang JJ, Wang HW, Cheng YW, Chiang LY (1997) Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol Lett 93:29–37PubMedCrossRefGoogle Scholar
  136. Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2002) Uraninite and fullerene in atmospheric particulates. Environ Sci Technol 36:4943–4947PubMedCrossRefGoogle Scholar
  137. Vesterdal LK, Folkmann JK, Jacobsen NR, Sheykhzade M, Wallin H, Loft S, Møller P (2009) Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis. Part Fibre Toxicol 6:5PubMedCrossRefGoogle Scholar
  138. Vileno B, Marcoux PR, Lekka M, Sienkiewicz A, Feher I, Forro L (2006) Spectroscopic and photophysical properties of a highly derivatized C60 fullerol. Adv Funct Mater 16:120–128CrossRefGoogle Scholar
  139. Wielgus AR, Zhao B, Chignell CF, Hu DN, Roberts JE (2010) Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells. Toxicol Appl Pharmacol 242:79–90PubMedCrossRefGoogle Scholar
  140. Wolff DJ, Papoiu AD, Mialkowski K, Richardson CF, Schuster DI, Wilson SR (2000) Inhibition of nitric oxide synthase isoforms by tris-malonyl-C60-fullerene adducts. Arch Biochem Biophys 378:216–223PubMedCrossRefGoogle Scholar
  141. Xia XR, Monteiro-Riviere NA, Riviere JE (2010a) Intrinsic biological property of colloidal fullerene nanoparticles (nC60): lack of lethality after high dose exposure to human epidermal and bacterial cells. Toxicol Lett 197:128–134PubMedCrossRefGoogle Scholar
  142. Xia XR, Monteiro-Riviere NA, Riviere JE (2010b) Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol 242:29–37PubMedCrossRefGoogle Scholar
  143. Xiao L, Takada H, Maeda K, Haramoto M, Miwa N (2005) Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacother 59:351–358PubMedCrossRefGoogle Scholar
  144. Xiao L, Matsubayashi K, Miwa N (2007) Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues. Arch Dermatol Res 299:245–257PubMedCrossRefGoogle Scholar
  145. Xiao L, Aoshima H, Saitoh Y, Miwa N (2010) Fullerene–polyvinylpyrrolidone clathrate localizes in the cytoplasm to prevent ultraviolet-A ray-induced DNA-fragmentation and activation of the transcriptional factor NF-κB. J Cell Biochem 111:955–966PubMedCrossRefGoogle Scholar
  146. Xu A, Chai Y, Nohmi T, Hei TK (2009a) Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 20(6):3CrossRefGoogle Scholar
  147. Xu JY, Han K, Li SX, Cheng JS, Xu GT, Li WX, Li QN (2009b) Pulmonary responses to polyhydroxylated fullerenols, C60(OH)x. J Appl Toxicol 29:578–584PubMedCrossRefGoogle Scholar
  148. Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2:385–389PubMedCrossRefGoogle Scholar
  149. Yamakoshi Y, Sueyoshi S, Fukuhara K, Miyata N, Masumizu T, Kohno M (1998) OH and O2 generation in aqueous C60 and C70 solutions by photoirradiation: an EPR study. J Am Chem Soc 120:12363–12364CrossRefGoogle Scholar
  150. Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2·− versus 1O2. J Am Chem Soc 125:12803–12809PubMedCrossRefGoogle Scholar
  151. Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:C1495–C1502PubMedCrossRefGoogle Scholar
  152. Yang XL, Fan CH, Zhu HS (2002) Photoinduced cytotoxicity of malonic acid [C(60)]fullerene derivatives and its mechanism. Toxicol In Vitro 16:41–46PubMedCrossRefGoogle Scholar
  153. Yang XL, Huang C, Qiao XG, Yao L, Zhao DX, Tan X (2007) Photoinduced lipid peroxidation of erythrocyte membranes by a bis-methanophosphonate fullerene. Toxicol In Vitro 21:1493–1498PubMedCrossRefGoogle Scholar
  154. Yokoyama H, Ono T, Morimoto Y, Myojo T, Tanaka I, Shimada M, Wang WN, Endoh S, Uchida KK (2009) Noninvasive in vivo electron paramagnetic resonance study to estimate pulmonary reducing ability in mice exposed to NiO or C60 nanoparticles. J Magn Reson Imaging 29:1432–1437PubMedCrossRefGoogle Scholar
  155. Zabirnyk O, Yezhelyev M, Seleverstov O (2007) Nanoparticles as a novel class of autophagy activators. Autophagy 3:278–281PubMedGoogle Scholar
  156. Zhang B, Cho M, Fortner JD, Lee J, Huang CH, Hughes JB, Kim JH (2009) Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide. Environ Sci Technol 43:108–113PubMedCrossRefGoogle Scholar
  157. Zhang M, Li J, Xing G, He R, Li W, Song Y, Guo H (2011) Variation in the internalization of differently sized nanoparticles induces different DNA-damaging effects on a macrophage cell line. Arch Toxicol 85:1575–1588PubMedCrossRefGoogle Scholar
  158. Zhao B, Bilski PJ, He YY, Feng L, Chignell CF (2008a) Photoinduced reactive oxygen species generation by different water-soluble fullerenes (C60) and their cytotoxicity in human keratinocytes. Photochem Photobiol 84:1215–1223PubMedCrossRefGoogle Scholar
  159. Zhao B, He YY, Bilski PJ, Chignell CF (2008b) Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes: type I vs type II mechanisms. Chem Res Toxicol 21:1056–1063PubMedCrossRefGoogle Scholar
  160. Zhao B, He YY, Chignell CF, Yin JJ, Andley U, Roberts JE (2009) Difference in phototoxicity of cyclodextrin complexed fullerene [(gamma-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chem Res Toxicol 22:660–667PubMedCrossRefGoogle Scholar
  161. Zhu X, Zhu L, Lang Y, Chen Y (2008) Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ Toxicol Chem 27:1979–1985PubMedCrossRefGoogle Scholar
  162. Zogovic NS, Nikolic NS, Vranjes-Djuric SD, Harhaji LM, Vucicevic LM, Janjetovic KD, Misirkic MS, Todorovic-Markovic BM, Markovic ZM, Milonjic SK, Trajkovic VS (2009) Opposite effects on nanocrystalline fullerene (C60) on tumor cell growth in vitro and in vivo and a possible role of immunosuppression in the cancer-promoting activity of C60. Biomaterials 30:6940–6946PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Vinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
  2. 2.School of Medicine, Institute of Microbiology and Immunology, University of BelgradeBelgradeSerbia

Personalised recommendations