Archives of Toxicology

, Volume 86, Issue 7, pp 1063–1075 | Cite as

Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health?

Inorganic compounds

Abstract

Personal care products (PCP) often contain micron- or nano-sized formulation components, such as nanoemulsions or microscopic vesicles. A large number of studies suggest that such vesicles do not penetrate human skin beyond the superficial layers of the stratum corneum. Nano-sized PCP formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Modern sunscreens contain insoluble titanium dioxide (TiO2) or zinc oxide (ZnO) nanoparticles (NP), which are efficient filters of UV light. A large number of studies suggest that insoluble NP do not penetrate into or through human skin. A number of in vivo toxicity tests, including in vivo intravenous studies, showed that TiO2 and ZnO NP are non-toxic and have an excellent skin tolerance. Cytotoxicity, genotoxicity, photo-genotoxicity, general toxicity and carcinogenicity studies on TiO2 and ZnO NP found no difference in the safety profile of micro- or nano-sized materials, all of which were found to be non-toxic. Although some published in vitro studies on insoluble nano- or micron-sized particles suggested cell uptake, oxidative cell damage or genotoxicity, these data are consistent with those from micron-sized particles and should be interpreted with caution. Data on insoluble NP, such as surgical implant-derived wear debris particles or intravenously administered magnetic resonance contrast agents suggest that toxicity of small particles is generally related to their chemistry rather than their particle size. Overall, the weight of scientific evidence suggests that insoluble NP used in sunscreens pose no or negligible risk to human health, but offer large health benefits, such as the protection of human skin against UV-induced skin ageing and cancer.

Keywords

Personal care products Sunscreens Nanoparticles TiO2 ZnO Skin penetration Safety assessment 

Abbreviations

GLP

Good laboratory practice

NP

Nanoparticle(s)

PCP

Personal care product(s)/cosmetics

PPS

Primary particle size

SC

Stratum corneum

TiO2

Titanium dioxide

TTD

Transdermal drug delivery

ZnO

Zinc oxide

Notes

Acknowledgments

The authors of the article are employees of the personal care product industry. However, the opinions forwarded in the article represent their personal and independent opinions. In addition, the authors received no personal support or reward by their employer or the PCP industry for writing the article.

Conflict of interest

They therefore declare no conflict of interest.

References

  1. Adachi K, Yamada N, Yamamoto K, Yoshida Y, Yamamoto O (2010) In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology 4(3):296–306PubMedCrossRefGoogle Scholar
  2. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanocapsules. J Contr Release 99(1):53–62CrossRefGoogle Scholar
  3. Arayachukeat S, Wanichwecharungruang SP, Tree-Udom T (2010) Retinyl acetate-loaded nanoparticles: dermal penetration and release of retinyl palmitate. Int J Pharm 404(1–2):281–288PubMedGoogle Scholar
  4. Bennat C, Müller-Goymann CC (2000) Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmetic Sci 22:271–283CrossRefGoogle Scholar
  5. Benson HAE (2005) Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2:23–33PubMedCrossRefGoogle Scholar
  6. BfR (2006). Bundesamt fuer Risikobewertung. Nanotechnologie und Lichtschutz. Available at: http://www.bfr.bund.de/cd/242
  7. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins RPF, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdoerster E (2006) The potential risks of nanomaterials: a review conducted out for ECETOC. Particle Fibre Toxicol 3:11Google Scholar
  8. Bos JD, Meinardi MMHM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:165–169PubMedCrossRefGoogle Scholar
  9. Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM, Lewis JM (2005) Preclinical safety and pharmacokinetic profuile of ferrumoxtran-10, an ultrasmall supermagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 41(3):313–324CrossRefGoogle Scholar
  10. Buesen R, Strauss V, Kaufmann W, van Ravenzwaay B (2009) Comparative study on the toxicity of nanoscale zinc oxides in Wistar rats after intravenous administration and observation period up to 4 weeks. BASF SE, Experimental Toxicology Department, Study No. OPPTS 870.7485, December 2009 (unpublished)Google Scholar
  11. Ceve G, Vierl U (2010) Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Controll Release 141:277–299CrossRefGoogle Scholar
  12. Choi MJ, Maibach HI (2005) Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 18:209–219PubMedCrossRefGoogle Scholar
  13. Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154PubMedCrossRefGoogle Scholar
  14. Dufour EK, Kumaravel T, Nohynek GJ, Kirkland D, Toutain H (2006) Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mut Res 607:215–244Google Scholar
  15. Du Plessis J, Ramachandran C, Weiner N, Muller DG (1994) The influence of particle size of liposomes on the deposition of drug into skin. Int J Pharm 103:277–282CrossRefGoogle Scholar
  16. Durand LN, Habran N, Henschel V, Amighi K (2009) In vitro evaluation of the cutaneous penetration of sprayable sunscreen emulsions with high concentrations of UV filters. Int J Cosmet Sci 31:279–292PubMedCrossRefGoogle Scholar
  17. Dussert A, Gooris E (1997) Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci 19:119–129PubMedCrossRefGoogle Scholar
  18. El Maghraby GM, Barry BW, Williams AC (2008) Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 34(4–5):203–222PubMedCrossRefGoogle Scholar
  19. Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Ravenszwaay B (2008) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 82(3):151–157PubMedCrossRefGoogle Scholar
  20. Filipe P, Silva JN, Silva R, Cirne de Castro JL, Marques Gomes M, Alves LC, Santus R, Pinheiro T (2009) Stratum corneum is an effective barrier to TiO 2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 22:266–275Google Scholar
  21. Furukawa F, Doi Y, Suguro M, Morita O, Kuwahara H, Masunaga T, Hatakeyama Y, Mori F (2011) Lack of skin carcinogencity of topically applied titanium dioxide nanoparticles in the mouse. Food Chem Toxicol 40:744–749Google Scholar
  22. Gamer AO, Leibold E, van Ravenzwaay B (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20:301–307PubMedCrossRefGoogle Scholar
  23. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Imhof V, Gehr P (2005) Ultrafine particles cross cellular membranes by non-phagocytotic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560PubMedCrossRefGoogle Scholar
  24. Gontier E, Habchi C, Pouthier T, Aguer P, Barberet P, Barbotteau Y, et al. (2004) Nuclear microscopy and electron microscopy studies of percutaneous penetration of nanoparticles in mammalian skin. 34th EDSR Meeting. Abstract 64Google Scholar
  25. Gontier E, Ynsa MD, Biro T, Hunyadi J, Kiss B, Gaspar K, Pinheiro T, Silva JN, Filipe P, Stachura J, Dabros W, Reinert T, Butz T, Moretto P, Surlève-Bazeille JE (2008) Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology 2(4):218–231CrossRefGoogle Scholar
  26. Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Yu WW, Colvin VL, Walker NJ, Howard PC (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98(1):249–257PubMedCrossRefGoogle Scholar
  27. Gottbrath S, Müller-Goymann CC (2003) Penetration and visualization of titanium dioxide microparticles in human stratum corneumeeffect of different formulations on the penetration of titanium dioxide. SOFW J 129:11–17Google Scholar
  28. Grassian VH, Adamcakova-Dodd A, Pettibone JM, O’Shaughnessy P, Thorne PS (2007) Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes. Nanotoxicology 1(3):211–226CrossRefGoogle Scholar
  29. Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, Trotter J, Kinsley L, Greenoak G (2010) Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118(1):140–149PubMedCrossRefGoogle Scholar
  30. Gunther C, Kecskes S, Staks T, Tauber U (1998) Percutaneous absorption of methylprednisolone aceponate following topical application of Avantan lotion on intact, inflamed and stripped skin of male volunteers. Skin Pharmacol Appl Skin Physiol 11(1):35–42PubMedGoogle Scholar
  31. Hoet PHM, Brüske-Hohlfeld I, Sata OV (2004) Nanoparticles—known and unknown health risks. J Nanotechnol 2(12):1–15Google Scholar
  32. Honeywell-Nguyen PL, Gooris GS, Bouwstra JA (2004) Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J Invest Dermatol 123(5):902–910PubMedCrossRefGoogle Scholar
  33. Inman AO, Landsiedel R, Wiench K, Riviere JE, Schulte S, Monteiro-Riviere NA (2010) Assessment of UVB-damaged skin in vivo with sunscreen formulations containing Titanium and Zinc nanoparticles. Poster No. 2067 shown at SOT 2010 meeting, Salt Lake City, Utah, US, March 2010Google Scholar
  34. Izquierdo P, Wiechers JW, Escribano E, Garcia-Celma MJ, Tadros TF, Esquena J, Dederen JC, Solans C (2007) A study on the influence of emulsion droplet size on the skin penetration of tetracaine. Skin Pharmacol Physiol 20(5):263–270PubMedCrossRefGoogle Scholar
  35. Jonaitis TS, Card JW, Magnuson B (2010) Concerns regarding nano-sized titanium dioxide dermal penetration and toxicity study. Toxicol Lett 192:268–269PubMedCrossRefGoogle Scholar
  36. Karlsson HL, Gustafsson J, Cronholm P, Muller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112–118PubMedCrossRefGoogle Scholar
  37. Kertesz Z, Szikszai Z, Gontier E, Moretto P, Surleve-Bazeille JE, Kiss B, Juhasz I, Hunyadi J, Kiss AZ (2005) Nuclear microprobe study of TiO2-penetration in the epidermis of human skin xenografts. Nucl Instrum Methods Phys Res, Sect B 231:280–285CrossRefGoogle Scholar
  38. Kiss B, Bíró T, Czifra G, Tóth BI, Kertész Z, Szikszai Z, Kiss AZ, Juhász I, Zouboulis CC, Hunyadi J (2008) Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol 17(8):659–667Google Scholar
  39. Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123–126:369–385PubMedCrossRefGoogle Scholar
  40. Kuo TR, Wu CL, Hsu CT, Lo W, Chiang SJ, Lin SJ, Dong CY, Chen CC (2009) Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30:3002–3008PubMedCrossRefGoogle Scholar
  41. Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256PubMedGoogle Scholar
  42. Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627PubMedCrossRefGoogle Scholar
  43. Lekki J, Stachura Z, Dabros W, Stachura J, Menzel F, Reinert T, Butz T, Pallon J, Gontier E, Ynsa MD, Moretto P, Kertesz Z, Szikszai Z, Kiss AZ (2007) On the follicular pathway of percutaneous uptake of nanoparticles: ion microscopy and autoradiography studies. Nucl Instrum Methods Phys Res Sec B Beam Interact Mater Atoms 260:174–177CrossRefGoogle Scholar
  44. Lopez C (2005) Focus on the supramoleecular structure of milk fat in dairy products. Reprod Nutr Developm 45:497–511CrossRefGoogle Scholar
  45. Luengo J, Weiss B, Schneider M, Ehlers A, Stracke F, Konig K, Kostka KH, Lehr CM, Schaefer UF (2006) Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol Physiol 4:190–197CrossRefGoogle Scholar
  46. Magnusson BM, Anissimov YG, Cross SE, Roberts MS (2004) Molecular size as the main determinant of solute maximum flux across the skin. J Invest Dermatol 122:993–999Google Scholar
  47. Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10–20PubMedCrossRefGoogle Scholar
  48. McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB, Olukotun AY (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. JMRI 4:301–307PubMedCrossRefGoogle Scholar
  49. Menzel F, Reinet T, Vogt J, Butz T (2004) Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instr Meth Phys Res 220:82–86CrossRefGoogle Scholar
  50. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Champ S, Inman AO, Riviere JE (2010) In vitro penetration studies of sunscreen formulations containing Titanium and Zinc Nanoparticles. Poster No. 2068, US SOT 2010 meeting, Salt Lake City, Utah, US, March 2010Google Scholar
  51. Nanoderm (2007) Quality of skin as a barrier to ultra-fine particles. Final report 1–55. Available at: http://www.uni-leipzig.de/~nanoderm/Downloads/Nanoderm_Final_Report.pdf
  52. Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium and zinc oxide-based sunscreens. J Am Acad Dermatol 61(4):685–692PubMedCrossRefGoogle Scholar
  53. Nohynek GJ, Dufour EK (2008) Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Appl Skin Physiol 21:136–149Google Scholar
  54. Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37(1–27):2007Google Scholar
  55. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  56. Pflücker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, Wepf R, Gers- Berlag H (2001) The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 14:92–97PubMedGoogle Scholar
  57. Pinheiro T, Allon J, Alves LC, Filipe P, Silva JN (2007) The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across the skin. Nuclear Instrum Methods Phys Res B 260:119–123CrossRefGoogle Scholar
  58. Popov AP, Kirillin MY, Priezzhev AV, Lademann J, Hast J, Myllyla R (2005) Optical sensing of titanium dioxide nanoparticles within horny layer of human skin and their protecting effect against solar UV radiation. J. Biomed Optics 10(6):113–122CrossRefGoogle Scholar
  59. Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, Siitonen PH, Cozart CR, Patri AK, McNeil SE, Howard PC, Doub WH, Buhse LF (2010) Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol Sci 115(1):156–166PubMedCrossRefGoogle Scholar
  60. SCCP (2006) The SCCP’s notes of guidance for the testing of cosmetic ingredients and their safety evaluation. 6th Revision. 19 December 2006. Available at: http://ec.europa.eu/health/ph_risk/committees/
  61. Schäfer-Korting M, Korting HC, Ponce-Paschal E (1994) Liposomal tretinoin for uncomplicated acne vulgaris. Clin Invest 72(12):1086–1091CrossRefGoogle Scholar
  62. Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509PubMedCrossRefGoogle Scholar
  63. Schins RP (2002) Mechanism of genotoxicity of particles and fibers. Inhal Toxicol 14(1):57–78PubMedCrossRefGoogle Scholar
  64. Schreier H, Bouwstra JA (1994) Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. Intern J Pharm 30:1–15Google Scholar
  65. Schulz J, Hohenberg H, Pflücker F, Gärtner E, Will T, Pfeiffer S, et al. (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl):S157–S163Google Scholar
  66. Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M (2010) Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci 35(1):107–113PubMedCrossRefGoogle Scholar
  67. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101(1):4–21PubMedCrossRefGoogle Scholar
  68. Tan MH, Commens CA, Burnett L, Snitch PJ (1996) A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 37:185–187PubMedCrossRefGoogle Scholar
  69. Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D (2007) An investigation of the photo-clastogenic potential of ultrafine titanium dioxide. Mut Res 634(1–2):205–219Google Scholar
  70. Tyner KM, Wokovich AM, Godard DE, Doudr WH, Sadrich N (2011) The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Intern J Cosm Sci 1–15. doi: 10.1111/j.1468-2494.2010.006.22.x
  71. US Environmental Protection Agency (2005) Nanotechnology workgroup/EPA’s science policy council. Nanotechnology white paper, 68–70, December 2, 2005. At: http://www.epa.gov/OSA/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005.pdf
  72. Van den Bergh BAI, Vroom J, Gerritsen H, Junginger HE, Bouwstra JA (1999) Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy. Biochim Biophys Act 1461:155–173CrossRefGoogle Scholar
  73. Verma DD, Verma S, Blume G, Fahr A (2003) Particle size of liposomes influences dermal delivery of substances into the skin. Int J Pharm 258:141–151PubMedCrossRefGoogle Scholar
  74. Walker SL, Hawk JLM, Young AR (2003) Acute and chronic effects of ultraviolet radiation on the skin. In: Freedberg IM, Eisen AZ, Wolff K, Austen FK, Goldsmith LA, Katz SI (eds) Fitzpatrick’s dermatology in general medicine, 6th edn. MacGraw-Hill: New York, USA. Chapter 134, pp 1275–1282Google Scholar
  75. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particlesas a component of nanoparticle risk assessment. Toxicol Lett 171:99–110PubMedCrossRefGoogle Scholar
  76. Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu H, Yang X, Zeng FD (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191:1–8PubMedCrossRefGoogle Scholar
  77. Yu HY, Liao HM (1996) Triamcinolone permeation from different liposome formulations through rat skin in vitro. Int J Pharm 127:1–7CrossRefGoogle Scholar
  78. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Optics 13(06):064031CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Global Safety Evaluation, L’OREAL Research and InnovationAsnièresFrance
  2. 2.Global Safety Evaluation, L’OREAL Research and InnovationAsnièresFrance

Personalised recommendations