Advertisement

Archives of Toxicology

, Volume 86, Issue 9, pp 1349–1367 | Cite as

Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance

  • Espen Mariussen
Review Article

Abstract

Perfluoroalkylated compounds (PFCs) are used in fire-fighting foams, treatment of clothes, carpets and leather products, and as lubricants, pesticides, in paints and medicine. Recent developments in chemical analysis have revealed that fluorinated compounds have become ubiquitously spread and are regarded as a potential threats to the environment. Due to the carbon–fluorine bond, which has a very high bond strength, these chemicals are extremely persistent towards degradation and some PFCs have a potential for bioaccumulation in organisms. Of particular concern has been the developmental toxicity of PFOS and PFOA, which has been manifested in rodent studies as high mortality of prenatally exposed newborn rats and mice within 24 h after delivery. The nervous system appears to be one of the most sensitive targets of environmental contaminants. The serious developmental effects of PFCs have lead to the upcoming of studies that have investigated neurotoxic effects of these substances. In this review the major findings of the neurotoxicity of the main PFCs and their suggested mechanisms of action are presented. The neurotoxic effects are discussed in light of other toxic effects of PFCs to indicate the significance of PFCs as neurotoxicants. The main findings are that PFCs may induce neurobehavioral effects, particularly in developmentally exposed animals. The effects are, however, subtle and inconclusive and are often induced at concentrations where other toxic effects also are expected. Mechanistic studies have shown that PFCs may affect the thyroid system, influence the calcium homeostasis, protein kinase C, synaptic plasticity and cellular differentiation. Compared to other environmental toxicants the human blood levels of PFCs are high and of particular concern is that susceptible groups may be exposed to a cocktail of substances that in combination reach harmful concentrations.

Keywords

Perfluoroalkylated compounds (PFCs) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) Organohalogenated compounds Neurobehavioral Neurochemical Neuroendocrine 

References

  1. Ahrens L, Siebert U, Ebinghaus R (2009) Total body burden and tissue distribution of polyfluorinated compounds in harbor seals (Phoca vitulina) from the German Bight. Mar Pollut Bull 58:520–525PubMedCrossRefGoogle Scholar
  2. Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS (2003) Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med 60:722–729PubMedCrossRefGoogle Scholar
  3. Athanasiadou M, Cuadra SN, Marsh G, Bergman A, Jakobsson K (2008) Polybrominated diphenyl ethers (PBDEs) and bioaccumulative hydroxylated PBDE metabolites in young humans from Managua, Nicaragua. Environ Health Perspect 116:400–408PubMedCrossRefGoogle Scholar
  4. Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SM (2003) Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect 111:1485–1489PubMedCrossRefGoogle Scholar
  5. Barkley RA (1998) Attention-deficit hyperactivity disorder. Sci Am 279:66–71PubMedCrossRefGoogle Scholar
  6. Barter RA, Klaassen CD (1994) Reduction of thyroid hormone levels and alteration of thyroid function by four representative UDP-glucuronosyltransferase inducers in rats. Toxicol Appl Pharmacol 128:9–17PubMedCrossRefGoogle Scholar
  7. Beetstra JB, van Engelen JG, Karels P, van der Hoek HJ, de Jong M, Docter R, Krenning EP, Hennemann G, Brouwer A, Visser TJ (1991) Thyroxine and 3,3′,5-triiodothyronine are glucuronidated in rat liver by different uridine diphosphate-glucuronyltransferases. Endocrinology 128:741–746PubMedCrossRefGoogle Scholar
  8. Benskin JP, De Silva AO, Martin LJ, Arsenault G, McCrindle R, Riddell N, Mabury SA, Martin JW (2009) Disposition of perfluorinated acid isomers in Sprague-Dawley rats; part 1: single dose. Environ Toxicol Chem 28:542–554PubMedCrossRefGoogle Scholar
  9. Bjork JA, Wallace KB (2009) Structure-activity relationships and human relevance for perfluoroalkyl acid-induced transcriptional activation of peroxisome proliferation in liver cell cultures. Toxicol Sci 111:89–99PubMedCrossRefGoogle Scholar
  10. Bossi R, Riget FF, Dietz R, Sonne C, Fauser P, Dam M, Vorkamp K (2005) Preliminary screening of perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish, birds and marine mammals from Greenland and the Faroe Islands. Environ Pollut 136:323–329PubMedCrossRefGoogle Scholar
  11. Braune BM, Trudeau S, Jeffrey DA, Mallory ML (2011) Biomarker responses associated with halogenated organic contaminants in northern fulmars (Fulmarus glacialis) breeding in the Canadian Arctic. Environ Pollut 159:2891–2898PubMedCrossRefGoogle Scholar
  12. Brouwer A (1989) Inhibition of thyroid hormone transport in plasma of rats by polychlorinated biphenyls. Arch Toxicol Suppl 13:440–445PubMedGoogle Scholar
  13. Brouwer A (1990) Competitive-inhibition of thyroxine binding to transthyretin by monohydroxy metabolites of 3,4,3′,4′-tetrachlorobiphenyl. Chemosphere 20:1257–1262CrossRefGoogle Scholar
  14. Brouwer A (1991) Role of biotransformation in PCB-induced alterations in vitamin-A and thyroid-hormone metabolism in laboratory and wildlife species. Biochem Soc Trans 19:731–737PubMedGoogle Scholar
  15. Brouwer A, Morse DC, Lans MC, Schuur AG, Murk AJ, Klasson-Wehler E, Bergman A, Visser TJ (1998) Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Indust Health 14:59–84Google Scholar
  16. Brown RC, Lockwood AH, Sonawane BR (2005) Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 113:1250–1256PubMedCrossRefGoogle Scholar
  17. Bustnes JO, Moe B, Herzke D, Hanssen SA, Nordstad T, Sagerup K, Gabrielsen GW, Borgå K (2010) Strongly increasing blood concentrations of lipid-soluble organochlorines in high arctic common eiders during incubation fast. Chemosphere 79:320–325PubMedCrossRefGoogle Scholar
  18. Butenhoff J, Costa G, Elcombe C, Farrar D, Hansen K, Iwai H, Jung R, Kennedy G Jr, Lieder P, Olsen G, Thomford P (2002) Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol Sci 69:244–257PubMedCrossRefGoogle Scholar
  19. Butenhoff JL, Gaylor DW, Moore JA, Olsen GW, Rodricks J, Mandel JH, Zobel LR (2004) Characterization of risk for general population exposure to perfluorooctanoate. Regul Toxicol Pharmacol 39:363–380PubMedCrossRefGoogle Scholar
  20. Butenhoff JL, Gaylor DW, Moore JA, Olsen GW, Rodricks J, Mandel JH, Zobel LR (2005) Response to letter to the editor. Regul Toxicol Pharmacol 145:146–147CrossRefGoogle Scholar
  21. Butenhoff JL, Chang SC, Ehresman DJ, York RG (2009a) Evaluation of potential reproductive and developmental toxicity of potassium perfluorohexanesulfonate in Sprague Dawley rats. Reprod Toxicol 27:331–341PubMedCrossRefGoogle Scholar
  22. Butenhoff JL, Ehresman DJ, Chang SC, Parker GA, Stump DG (2009b) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K + PFOS) in rats: developmental neurotoxicity. Reprod Toxicol 27:319–330PubMedCrossRefGoogle Scholar
  23. Butenhoff JL, Bjork JA, Chang SC, Ehresman DJ, Parker GA, Das K, Lau C, Lieder PH, van Otterdijk FM, Wallace KB (2011) Toxicological evaluation of ammonium perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reprod Toxicol. doi: 10.1016/j.reprotox.2011.08.004 (in press)
  24. Butt CM, Berger U, Bossi R, Tomy GT (2010) Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 408:2936–2965PubMedCrossRefGoogle Scholar
  25. Calvo RM, Jauniaux E, Gulbis B, Asunción M, Gervy C, Contempré B, Morreale de Escobar G (2002) Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab 87:1768–1777PubMedCrossRefGoogle Scholar
  26. Carvalho FP (2006) Agriculture, pesticides, food security and food safety Environ Sci Pol 9:685–692Google Scholar
  27. Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau CS, Singh RJ, Wallace KB, Butenhoff JL (2007) Negative bias from analog methods used in the analysis of free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS). Toxicology 234:21–33PubMedCrossRefGoogle Scholar
  28. Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau C, Singh RJ, Wallace KB, Butenhoff JL (2008) Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology 243:330–339PubMedCrossRefGoogle Scholar
  29. Chang SC, Ehresman DJ, Bjork JA, Wallace KB, Parker GA, Stump DG, Butenhoff JL (2009) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K + PFOS) in rats: toxicokinetics, thyroid hormone status, and related gene expression. Reprod Toxicol 27:387–399PubMedCrossRefGoogle Scholar
  30. Colborn T (2004) Neurodevelopment and endocrine disruption. Environ Health Perspect 112:944–949PubMedCrossRefGoogle Scholar
  31. Collins WT Jr, Capen CC (1980) Fine structural lesions and hormonal alterations in thyroid glands of perinatal rats exposed in utero and by the milk to polychlorinated biphenyls. Am J Pathol 99:125–142PubMedGoogle Scholar
  32. Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42:995–1003PubMedCrossRefGoogle Scholar
  33. Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baetcke KP, Hoffmann JL, Morrow MS, Rodier DJ, Schaeffer JE, Touart LW, Zeeman MG, Patel YM (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106(Suppl 1):11–56PubMedCrossRefGoogle Scholar
  34. Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB (2009) Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol 56:338–349PubMedCrossRefGoogle Scholar
  35. De Voogt P, Berger U, de Coen W, de Wolf W, Heimstad E, McLchlan M, van Leeuwen S, van Roon A (2006) PERFORCE, perfluorinated compounds in the European environment, scientific report. FP6-NEST-508967, University of Amsterdam, AmsterdamGoogle Scholar
  36. Donaldson SG, Van Oostdam J, Tikhonov C, Feeley M, Armstrong B, Ayotte P, Boucher O, Bowers W, Chan L, Dallaire F, Dallaire R, Dewailly E, Edwards J, Egeland GM, Fontaine J, Furgal C, Leech T, Loring E, Muckle G, Nancarrow T, Pereg D, Plusquellec P, Potyrala M, Receveur O, Shearer RG (2010) Environmental contaminants and human health in the Canadian Arctic. Sci Total Environ 408:5165–5234PubMedCrossRefGoogle Scholar
  37. Ehresman DJ, Froehlich JW, Olsen GW, Chang SC, Butenhoff JL (2007) Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals. Environ Res 103:176–184PubMedCrossRefGoogle Scholar
  38. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and neurotoxicology. Neurotoxicology. doi: 10.1016/j.neuro.2011.12.009 (in press)
  39. Eriksson P (1997) Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology 18:719–726PubMedGoogle Scholar
  40. Eriksson P, Fredriksson A (1996) Developmental neurotoxicity of four ortho-substituted polychlorinated biphenyls in the neonatal mouse. Environ Toxicol Pharmacol 1:155–165PubMedCrossRefGoogle Scholar
  41. Eriksson P, Fredriksson A (1998) Neurotoxic effects in adult mice neonatally exposed to 3,3′ 4,4′ 5-pentachlorobiphenyl or 2,3,3′ 4,4′-pentachlorobiphenyl. Changes in brain nicotinic receptors and behaviour. Environ Toxicol Pharmacol 5:17–27PubMedCrossRefGoogle Scholar
  42. Eriksson P, Talts U (2000) Neonatal exposure to neurotoxic pesticides increases adult susceptibility: a review of current findings. Neurotoxicology 21:37–47PubMedGoogle Scholar
  43. Eriksson P, Lundkvist U, Fredriksson A (1991) Neonatal exposure to 3,3′,4,4′-tetrachlorobiphenyl: changes in spontaneous behaviour and cholinergic muscarinic receptors in the adult mouse. Toxicology 69:27–34PubMedCrossRefGoogle Scholar
  44. Eriksson P, Ahlbom J, Fredriksson A (1992) Exposure to DDT during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behaviour in adult mice. Brain Res 582:277–281PubMedCrossRefGoogle Scholar
  45. Eriksson P, Viberg H, Jakobsson E, Orn U, Fredriksson A (2002) A brominated flame retardant, 2,2′,4,4′,5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci 67:98–103PubMedCrossRefGoogle Scholar
  46. Eriksson P, Fischer C, Fredriksson A (2006). Polybrominated diphenyl ethers, a group of brominated flame retardants, can interact with polychlorinated biphenyls in enhancing developmental neurobehavioral defects. Toxicol Sci 94:302–309Google Scholar
  47. Eriksson P, Fischer C, Wallin M, Jakobsson E, Fredriksson A (2006) Impaired behaviour, learning and memory, in adult mice neonatally exposed to hexabromocyclododecane (HBCDD). Environ Toxicol Pharmacol 21:317–322PubMedCrossRefGoogle Scholar
  48. Fasano WJ, Carpenter SC, Gannon SA, Snow TA, Stadler JC, Kennedy GL, Buck RC, Korzeniowski SH, Hinderliter PM, Kemper RA (2006) Absorption, distribution, metabolism, and elimination of 8-2 fluorotelomer alcohol in the rat. Toxicol Sci 91:341–355 (Erratum in: Toxicol Sci (2008) 102:455)Google Scholar
  49. Fidaleo M (2009) Human health risk assessment for peroxisome proliferators: more than 30 years of research. Exp Toxicol Pathol 61:215–221PubMedCrossRefGoogle Scholar
  50. Fonnum F, Mariussen E (2009) Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J Neurochem 111:1327–1347PubMedCrossRefGoogle Scholar
  51. Fuentes S, Colomina MT, Rodriguez J, Vicens P, Domingo JL (2006) Interactions in developmental toxicology: concurrent exposure to perfluorooctane sulfonate (PFOS) and stress in pregnant mice. Toxicol Lett 164:81–89PubMedCrossRefGoogle Scholar
  52. Fuentes S, Colomina MT, Vicens P, Domingo JL (2007a) Influence of maternal restraint stress on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate (PFOS) in mice. Toxicol Lett 171:162–170PubMedCrossRefGoogle Scholar
  53. Fuentes S, Colomina MT, Vicens P, Franco-Pons N, Domingo JL (2007b) Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice: effects on postnatal development and behavior of the offspring. Toxicol Sci 98:589–598PubMedCrossRefGoogle Scholar
  54. Fuentes S, Vicens P, Colomina MT, Domingo JL (2007c) Behavioral effects in adult mice exposed to perfluorooctane sulfonate (PFOS). Toxicology 242:123–129PubMedCrossRefGoogle Scholar
  55. Gafni J, Wong PW, Pessah IN (2004) Non-coplanar 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) amplifies ionotropic glutamate receptor signaling in embryonic cerebellar granule neurons by a mechanism involving ryanodine receptors. Toxicol Sci 77:72–82PubMedCrossRefGoogle Scholar
  56. Golovanov IB, Tsygankova IG (2001) Structure-property correlation equation: VII. Some properties of perfluorinated organic compounds. Russ J Gen Chem 71:839–844CrossRefGoogle Scholar
  57. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178PubMedCrossRefGoogle Scholar
  58. Greco W, Unkelbach H, Poch G, Suhnel J, Bodker W (1992) Consensus on concepts and terminology for combined action assessment: The Saariselkä agreement. Arch Complex Environ Stud 4:65–69Google Scholar
  59. Grice MM, Alexander BH, Hoffbeck R, Kampa DM (2007) Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med 49:722–729PubMedCrossRefGoogle Scholar
  60. Gutshall DM, Pilcher GD, Langley AE (1989) Mechanism of the serum thyroid hormone lowering effect of perfluoro-n-decanoic acid (PFDA) in rats. J Toxicol Environ Health 28:53–65PubMedCrossRefGoogle Scholar
  61. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341:549–555PubMedCrossRefGoogle Scholar
  62. Hagen DF, Belisle J, Johnson JD, Venkateswarlu P (1981) Characterization of fluorinated metabolites by a gas chromatographic-helium microwave plasma detector—the biotransformation of 1 h, 1 h, 2 h, 2 h-perfluorodecanol to perfluorooctanoate. Anal Biochem 118:336–343PubMedCrossRefGoogle Scholar
  63. Harada K, Xu F, Ono K, Iijima T, Koizumi A (2005) Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes. Biochem Biophys Res Commun 329:487–494PubMedCrossRefGoogle Scholar
  64. Harada KH, Hashida S, Kaneko T, Takenaka K, Minata M, Inoue K, Saito N, Koizumi A (2007) Biliary excretion and cerebrospinal fluid partition of perfluorooctanoate and perfluorooctane sulfonate in humans. Environ Toxicol Pharmacol 24:134–139PubMedCrossRefGoogle Scholar
  65. Hardell L, Lindstrom G, Van Bavel B (2002) Is DDT exposure during fetal period and breast-feeding associated with neurological impairment? Environ Res 88:141–144PubMedCrossRefGoogle Scholar
  66. Hardell E, Carlberg M, Nordström M, van Bavel B (2010) Time trends of persistent organic pollutants in Sweden during 1993–2007 and relation to age, gender, body mass index, breast-feeding and parity. Sci Total Environ 408:4412–4419PubMedCrossRefGoogle Scholar
  67. Hart K, Kannan K, Isobe T, Takahashi S, Yamada TK, Miyazaki N, Tanabe S (2008) Time trends and transplacental transfer of perfluorinated compounds in melon-headed whales stranded along the Japanese coast in 1982, 2001/2002, and 2006. Environ Sci Technol 42:7132–7137PubMedCrossRefGoogle Scholar
  68. Haug LS, Thomsen C, Becher G (2009) Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples. Environ Sci Technol 43:2131–2136PubMedCrossRefGoogle Scholar
  69. Haukås M, Berger U, Hop H, Gulliksen B, Gabrielsen GW (2007) Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ Pollut 148:360–371PubMedCrossRefGoogle Scholar
  70. Henriksen EO, Gabrielsen GW, Skaare JU (1998) Validation of the use of blood samples to assess tissue concentrations of organochlorines in glaucous gulls. Larus hyperboreus Chemos 37:2627–2643CrossRefGoogle Scholar
  71. Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM (2010) Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environ Health Perspect 118:1762–1767PubMedCrossRefGoogle Scholar
  72. Hopf NB, Ruder AM, Succop P (2009) Background levels of polychlorinated biphenyls in the U.S. population. Sci Total Environ 407:6109–6119PubMedCrossRefGoogle Scholar
  73. Jenssen BM (2006) Endocrine-disrupting chemicals and climate change: A worst-case combination for arctic marine mammals and seabirds? Environ Health Perspect 114(Suppl 1):76–80PubMedGoogle Scholar
  74. Johansson N, Fredriksson A, Eriksson P (2008) Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 29:160–169PubMedCrossRefGoogle Scholar
  75. Johansson N, Eriksson P, Viberg H (2009) Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol Sci 108:412–418PubMedCrossRefGoogle Scholar
  76. Jones PD, Hu W, De Coen W, Newsted JL, Giesy JP (2003) Binding of perfluorinated fatty acids to serum proteins. Environ Toxicol Chem 22:2639–2649PubMedCrossRefGoogle Scholar
  77. Kang JH, Jeong W, Park Y, Lee SY, Chung MW, Lim HK, Park IS, Choi KH, Chung SY, Kim DS, Park CS, Hwang O, Kim J (2002) Aroclor 1254-induced cytotoxicity in catecholaminergic CATH.a cells related to the inhibition of NO production. Toxicology 177:157–166PubMedCrossRefGoogle Scholar
  78. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Van Wouwe N, Yang JH, Aldoust KM (2004) Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38:4489–4495PubMedCrossRefGoogle Scholar
  79. Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM (2011) Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999–2008. Environ Sci Technol 45:8037–8045PubMedCrossRefGoogle Scholar
  80. Kennedy GL Jr, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, Biegel LB, Murphy SR, Farrar DG (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34:351–384PubMedCrossRefGoogle Scholar
  81. Kissa E (2001) Fluorinated surfactants and repellents. Surfactants Science Series 97. Marcel Dekker, New YorkGoogle Scholar
  82. Knox SS, Jackson T, Frisbee SJ, Javins B, Ducatman AM (2011) Perfluorocarbon exposure, gender and thyroid function in the C8 Health Project. J Toxicol Sci 36:403–410PubMedCrossRefGoogle Scholar
  83. Kodavanti PRS, Derr-Yellin EC (2002) Differential effects of polybrominated diphenyl ethers and polychlorinated biphenyls on [H-3]arachidonic acid release in rat cerebellasr granule neurons. Toxicol Sci 68:451–457PubMedCrossRefGoogle Scholar
  84. Kodavanti PRS, Shafer TJ, Ward TR, Mundy WR, Freudenrich T, Harry GJ, Tilson HA (1994) Differential effects of polychlorinated biphenyl congeners on phosphoinositide hydrolysis and protein kinase C translocation in rat cerebellar granule cells. Brain Res 662:75–82PubMedCrossRefGoogle Scholar
  85. Kodavanti PRS, Derr-Yellin EC, Mundy WR, Shafer TJ, Herr DW, Barone S, Choksi NY, MacPhail RC, Tilson HA (1998) Repeated exposure of adult rats to Aroclor 1254 causes brain region-specific changes in intracellular Ca2+ buffering and protein kinase C activity in the absence of changes in tyrosine hydroxylase. Toxicol Appl Pharmacol 153:186–198PubMedCrossRefGoogle Scholar
  86. Koibuchi N, Chin WW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–128PubMedCrossRefGoogle Scholar
  87. Kudo N, Iwase Y, Okayachi H, Yamakawa Y, Kawashima Y (2005) Induction of hepatic peroxisome proliferation by 8–2 telomer alcohol feeding in mice: formation of perfluorooctanoic acid in the liver. Toxicol Sci 86:231–238PubMedCrossRefGoogle Scholar
  88. Kudo N, Sakai A, Mitsumoto A, Hibino Y, Tsuda T, Kawashima Y (2007) Tissue distribution and hepatic subcellular distribution of perfluorooctanoic acid at low dose are different from those at high dose in rats. Biol Pharm Bull 30:1535–1540PubMedCrossRefGoogle Scholar
  89. Lai BC, Marion SA, Teschke K, Tsui JK (2002) Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism Relat Disord 8:297–309PubMedCrossRefGoogle Scholar
  90. Langley AE, Pilcher GD (1985) Thyroid, bradycardic and hypothermic effects of perfluoro-n-decanoic acid in rats. J Toxicol Environ Health 15:485–491PubMedCrossRefGoogle Scholar
  91. Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Butenhoff JL, Stevenson LA (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci 74:382–392PubMedCrossRefGoogle Scholar
  92. Lau C, Butenhoff JL, Rogers JM (2004) The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol 198:231–241PubMedCrossRefGoogle Scholar
  93. Lau C, Thibodeaux JR, Hanson RG, Narotsky MG, Rogers JM, Lindstrom AB, Strynar MJ (2006) Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci 90:510–518PubMedCrossRefGoogle Scholar
  94. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394PubMedCrossRefGoogle Scholar
  95. Lehmler HJ (2005) Synthesis of environmentally relevant fluorinated surfactants—a review. Chemosphere 58:1471–1496PubMedCrossRefGoogle Scholar
  96. Liao CY, Li XY, Wu B, Duan S, Jiang GB (2008) Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel. Environ Sci Technol 42:5335–5341PubMedCrossRefGoogle Scholar
  97. Liao CY, Cui L, Zhou QF, Duan SM, Jiang GB (2009a) Effects of perfluorooctane sulfonate on ion channels and glutamate-activated current in cultured rat hippocampal neurons. Environ Toxicol Pharmacol 27:338–344PubMedCrossRefGoogle Scholar
  98. Liao C, Wang T, Cui L, Zhou Q, Duan S, Jiang G (2009b) Changes in synaptic transmission, calcium current, and neurite growth by perfluorinated compounds are dependent on the chain length and functional group. Environ Sci Technol 43:2099–2104PubMedCrossRefGoogle Scholar
  99. Liu L, Liu W, Song J, Yu H, Jin Y, Oami K, Sato I, Saito N, Tsuda S (2009) A comparative study on oxidative damage and distribution of perfluorooctane sulfonate (PFOS) in mice at different postnatal developmental stages. J Toxicol Sci 34:245–254PubMedCrossRefGoogle Scholar
  100. Liu X, Jin Y, Liu W, Wang F, Hao S (2011a) Possible mechanism of perfluorooctane sulfonate and perfluorooctanoate on the release of calcium ion from calcium stores in primary cultures of rat hippocampal neurons. Toxicol In Vitro 25:1294–1301PubMedCrossRefGoogle Scholar
  101. Liu J, Li J, Liu Y, Chan HM, Zhao Y, Cai Z, Wu Y (2011b) Comparison on gestation and lactation exposure of perfluorinated compounds for newborns. Environ Int 37:1206–1212PubMedCrossRefGoogle Scholar
  102. Lowe KC (1999) Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev 13: 171–184Google Scholar
  103. Lu C, Cheng SY (2009) Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J Mol Endocrinol 44:143–154PubMedCrossRefGoogle Scholar
  104. Luebker DJ, Hansen KJ, Bass NM, Butenhoff JL, Seacat AM (2002) Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology 176:175–185PubMedCrossRefGoogle Scholar
  105. Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL (2005a) Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 215:126–148PubMedCrossRefGoogle Scholar
  106. Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL (2005b) Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharamacokinetic parameters. Toxicology 215:149–169PubMedCrossRefGoogle Scholar
  107. Lundstedt-Enkel K, Karlsson D, Darnerud PO (2010) Interaction study with rats given two flame retardants: polybrominated diphenyl ethers (Bromkal 70-5 DE) and chlorinated paraffins (Cereclor 70L). J Chemometrics 24:710–718Google Scholar
  108. Macon MB, Villanueva LR, Tatum-Gibbs K, Zehr RD, Strynar MJ, Stanko JP, White SS, Helfant L, Fenton SE (2011) Prenatal perfluorooctanoic acid exposure in CD-1 mice: low-dose developmental effects and internal dosimetry. Toxicol Sci 122:134–145PubMedCrossRefGoogle Scholar
  109. Maestri L, Negri S, Ferrari M, Ghittori S, Fabris F, Danesino P, Imbriani M (2006) Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tissues by liquid chromatography/single quadrupole mass spectrometry. Rapid Commun Mass Spectrom 20:2728–2734PubMedCrossRefGoogle Scholar
  110. Mariussen E, Fonnum F (2006) Neurochemical targets and behavioral effects of organohalogen compounds; an update. Crit Rev Toxicol 36:253–289PubMedCrossRefGoogle Scholar
  111. Mariussen E, Myhre O, Reistad T, Fonnum F (2002) The polychlorinated biphenyl mixture aroclor 1254 induces death of rat cerebellar granule cells: The involvement of the N-methyl-D-aspartate receptor and reactive oxygen species. Toxicol Appl Pharmacol 179:137–144PubMedCrossRefGoogle Scholar
  112. Martin JW, Whittle DM, Muir DC, Mabury SA (2004) Perfluoroalkyl contaminants in a food web from Lake Ontario. Environ Sci Technol 38:5379–5385PubMedCrossRefGoogle Scholar
  113. Martin JW, Mabury SA, O’Brien PJ (2005) Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes. Chem Biol Interact 155:165–180PubMedCrossRefGoogle Scholar
  114. McKinney J, Fannin R, Jordan S, Chae K, Rickenbacher U, Pedersen L (1987) Polychlorinated biphenyls and related compound interactions with specific binding sites for thyroxine in rat liver nuclear extracts. J Med Chem 30:79–86PubMedCrossRefGoogle Scholar
  115. Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS (2010) Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect 118:686–692PubMedCrossRefGoogle Scholar
  116. Minh NH, Minh TB, Kajiwara N, Kunisue T, Subramanian A, Iwata H, Tana TS, Baburajendran R, Karuppiah S, Viet PH, Tuyen BC, Tanabe S (2006) Contamination by persistent organic pollutants in dumping sites of Asian developing countries: implication of emerging pollution sources. Arch Environ Contam Toxicol 50:474–481PubMedCrossRefGoogle Scholar
  117. Morse DC, Wehler EK, Wesseling W, Koeman JH, Brouwer A (1996) Alterations in rat brain thyroid hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol Appl Pharmacol 136:269–279PubMedCrossRefGoogle Scholar
  118. Nilsson R (2000) Endocrine modulators in the food chain and environment. Toxicol Pathol 28:420–431PubMedCrossRefGoogle Scholar
  119. Nøst TH, Helgason LB, Harju M, Heimstad ES, Gabrielsen GW, Jenssen BM (2012) Halogenated organic contaminants and their correlations with circulating thyroid hormones in developing Arctic seabirds. Sci Total Environ 414:248–256PubMedCrossRefGoogle Scholar
  120. Ohmori K, Kudo N, Katayama K, Kawashima Y (2003) Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 184:135–140PubMedCrossRefGoogle Scholar
  121. Olivero-Verbel J, Tao L, Johnston-Restrepo B, Guette-Fernandez J, Baldiris-Avila R, O’byrne-Hoyos I, Kannan K (2006) Perfluorooctanesulfonate and related fluorochemicals in biological samples from the north coast of Colombia. Environ Pollut 142:367–372PubMedCrossRefGoogle Scholar
  122. Olsen GW, Burris JM, Burlew MM, Mandel JH (2003) Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ 45:260–270CrossRefGoogle Scholar
  123. Olsen GW, Huang HY, Helzlsouer KJ, Hansen KJ, Butenhoff JL, Mandel JH (2005) Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environ Health Perspect 113:539–545PubMedCrossRefGoogle Scholar
  124. Olsen GW, Butenhoff JL, Zobel LR (2009) Perfluoroalkyl chemicals and human fetal development: an epidemiologic review with clinical and toxicological perspectives. Reprod Toxicol 27:212–230PubMedCrossRefGoogle Scholar
  125. Onishchenko N, Fischer C, Wan Ibrahim WN, Negri S, Spulber S, Cottica D, Ceccatelli S (2011) Prenatal exposure to PFOS or PFOA alters motor function in mice in a sex-related manner. Neurotox Res 19:452–461PubMedCrossRefGoogle Scholar
  126. Oppenheimer JH, Schwartz HL (1997) Molecular basis of thyroid hormone-dependent brain development. Endocr Rev 18:462–475PubMedCrossRefGoogle Scholar
  127. Parent AS, Naveau E, Gerard A, Bourguignon JP, Westbrook GL (2011) Early developmental actions of endocrine disruptors on the hypothalamus, hippocampus, and cerebral cortex. J Toxicol Environ Health B Crit Rev 14:328–345PubMedCrossRefGoogle Scholar
  128. Patandin S, Dagnelie PC, Mulder PG, Op de Coul E, van der Veen JE, Weisglas-Kuperus N, Sauer PJ (1999) Dietary exposure to polychlorinated biphenyls and dioxins from infancy until adulthood: a comparison between breast-feeding, toddler, and long-term exposure. Environ Health Perspect 107:45–51PubMedCrossRefGoogle Scholar
  129. Pinkas A, Slotkin TA, Brick-Turin Y, Van der Zee EA, Yanai J (2010) Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model. Neurotoxicol Teratol 32:182–186PubMedCrossRefGoogle Scholar
  130. Porterfield SP (1994) Vulnerability of the developing brain to thyroid abnormalities—environmental insults to the thyroid system. Environ Health Perspect 102:125–130PubMedGoogle Scholar
  131. Qazi MR, Bogdanska J, Butenhoff JL, Nelson BD, DePierre JW, Abedi-Valugerdi M (2009) High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion. Toxicology 262:207–214PubMedCrossRefGoogle Scholar
  132. Renner R (2001) Growing concern over perfluorinated chemicals. Environ Sci Technol 35:154A–160APubMedCrossRefGoogle Scholar
  133. Ribes D, Fuentes S, Torrente M, Colomina MT, Domingo JL (2010) Combined effects of perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis (HPA) function in the offspring of mice. Toxicol Appl Pharmacol 243:13–18PubMedCrossRefGoogle Scholar
  134. Rice DC (2000) Parallels between attention deficit hyperactivity disorder and behavioral deficits produced by neurotoxic exposure in monkeys. Environ Health Perspect 108:405–408PubMedGoogle Scholar
  135. Rickenbacher U, McKinney JD, Oatley SJ, Blake CC (1986) Structurally specific binding of halogenated biphenyls to thyroxine transport protein. J Med Chem 29:641–648PubMedCrossRefGoogle Scholar
  136. Rosen MB, Lau C, Corton JC (2009) Does exposure to perfluoroalkyl acids present a risk to human health? Toxicol Sci 111:1–3PubMedCrossRefGoogle Scholar
  137. Rubarth J, Dreyer A, Guse N, Einax JW, Ebinghaus R (2011) Perfluorinated compounds in red-throated divers from the German Baltic Sea: new findings from their distribution in 10 different tissues. Environ Chem 8:419–428Google Scholar
  138. Schettler T (2001) Toxic threats to neurologic development of children. Environ Health Perspect 109:813–816PubMedGoogle Scholar
  139. Schussler GC (2000) The thyroxine-binding proteins. Thyroid 10:141–149 (Review) (Erratum in: Thyroid (2000) 10:372)Google Scholar
  140. Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL (2002) Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci 68:249–264PubMedCrossRefGoogle Scholar
  141. Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, Butenhoff JL (2003) Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183:117–1131PubMedCrossRefGoogle Scholar
  142. Siblinski LJ, Allen JL, Erickson EE (1983) Two year oral (diet) toxicity/carcinogenicity study of fluorochemical FC-143 in rats. Expt. No. 0281CR0012, Riker Laboratories, Inc, St. Paul, MN. USEPA Public Docket AR-226-0437, AR-226-0438, AR-226-0439, and AR-226-0440Google Scholar
  143. Slotkin TA, MacKillop EA, Melnick RL, Thayer KA, Seidler FJ (2008) Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environ Health Perspect 116:716–722PubMedCrossRefGoogle Scholar
  144. Smithwick M, Mabury SA, Solomon KR, Sonne C, Martin JW, Born EW, Dietz R, Derocher AE, Letcher RJ, Evans TJ, Gabrielsen GW, Nagy J, Stirling I, Taylor MK, Muir DC (2005a) Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environ Sci Technol 39:5517–5523PubMedCrossRefGoogle Scholar
  145. Smithwick M, Muir DC, Mabury SA, Solomon KR, Martin JW, Sonne C, Born EW, Letcher RJ, Dietz R (2005b) Perflouroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus). Environ Toxicol Chem 24:981–986PubMedCrossRefGoogle Scholar
  146. Staddon JM, Rubin LL (1996) Cell adhesion, cell junctions and the blood-brain barrier. Curr Opin Neurobiol 6:622–627PubMedCrossRefGoogle Scholar
  147. Suga T (2004) Hepatocarcinogenesis by peroxisome proliferators. J Toxicol Sci 29:1–12PubMedCrossRefGoogle Scholar
  148. Sühnel J (1990) Evaluation of synergism or antagonism for the combined action of antiviral agents. Antiviral Res 13:23–39PubMedCrossRefGoogle Scholar
  149. Suk WA, Ruchirawat KM, Balakrishnan K, Berger M, Carpenter D, Damstra T, de Garbino JP, Koh D, Landrigan PJ, Makalinao I, Sly PD, Xu Y, Zheng BS (2003) Environmental threats to children’s health in Southeast Asia and the Western Pacific. Environ Health Perspect 111:1340–1347PubMedCrossRefGoogle Scholar
  150. Sundström M, Ehresman DJ, Bignert A, Butenhoff JL, Olsen GW, Chang SC, Bergman AA (2011) temporal trend study (1972–2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environ Int 37:178–183PubMedCrossRefGoogle Scholar
  151. Tatum-Gibbs K, Wambaugh JF, Das KP, Zehr RD, Strynar MJ, Lindstrom AB, Delinsky A, Lau C (2011) Comparative pharmacokinetics of perfluorononanoic acid in rat and mouse. Toxicology 281:48–55PubMedCrossRefGoogle Scholar
  152. Traves D (1968) Evidence that there are two forms of fluoride in human serum. Nature 217:1050–1051Google Scholar
  153. Van de Vijver KI, Hoslbeek L, Das K, Blust R, Joiris C, De Coen W (2007) Occurrence of perfluorooctane sulfonate and other perfluorinated alkylated substances in harbor porpoises from the Black Sea. Environ Sci Technol 41:315–320PubMedCrossRefGoogle Scholar
  154. Vanden Heuvel JP, Kuslikis BI, Van Rafelghem MJ, Peterson RE (1991a) Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J Biochem Toxicol 6:83–92PubMedCrossRefGoogle Scholar
  155. Vanden Heuvel JP, Kuslikis BI, Van Rafelghem MJ, Peterson RE (1991b) Disposition of perfluorodecanoic acid in male and female rats. Toxicol Appl Pharmacol 107:450–459PubMedCrossRefGoogle Scholar
  156. Vanden Heuvel JP, Kuslikis BI, Peterson RE (1992) Covalent binding of perfluorinated fatty acids to proteins in the plasma, liver and testes of rats. Chem Biol Interact 82:317–328PubMedCrossRefGoogle Scholar
  157. Verreault J, Houde M, Gabrielsen GW, Berger U, Haukas M, Letcher RJ, Muir DC (2005) Perfluorinated alkyl substances in plasma, liver, brain, and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian arctic. Environ Sci Technol 39:7439–7445PubMedCrossRefGoogle Scholar
  158. Viberg H, Fredriksson A, Jakobsson E, Orn U, Eriksson P (2003) Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci 76:112–120PubMedCrossRefGoogle Scholar
  159. Villanger GD, Jenssen BM, Fjeldberg RR, Letcher RJ, Muir DC, Kirkegaard M, Sonne C, Dietz R (2011) Exposure to mixtures of organohalogen contaminants and associative interactions with thyroid hormones in East Greenland polar bears (Ursus maritimus). Environ Int 37:694–708PubMedCrossRefGoogle Scholar
  160. Wang X, Li B, Zhao WD, Liu YJ, Shang DS, Fang WG, Chen YH (2011) Perfluorooctane sulfonate triggers tight junction “opening” in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 410:258–263PubMedCrossRefGoogle Scholar
  161. Weber R, Watson A, Forter M, Oliaei F (2011) Review article: persistent organic pollutants and landfills—a review of past experiences and future challenges. Waste Manag Res 29:107–121PubMedCrossRefGoogle Scholar
  162. Weiss JM, Andersson PL, Lamoree MH, Leonards PE, van Leeuwen SP, Hamers T (2009) Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol Sci 109:206–216PubMedCrossRefGoogle Scholar
  163. Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Env 43:153–169Google Scholar
  164. White SS, Fenton SE, Hines EP (2011) Endocrine disrupting properties of perfluorooctanoic acid. J Steroid Biochem Mol Biol 127:16–26PubMedCrossRefGoogle Scholar
  165. Yang JH, Derr-Yellin EC, Kodavanti PRS (2003) Alterations in brain protein kinase C isoforms following developmental exposure to a polychlorinated biphenyl mixture. Mol Brain Res 111:123–135PubMedCrossRefGoogle Scholar
  166. Ylinen M, Auriola S (1990) Tissue distribution and elimination of perfluorodecanoic acid in the rat after single intraperitoneal administration. Pharmacol Toxicol 66:45–48PubMedCrossRefGoogle Scholar
  167. Ylinen M, Hanhijärvi H, Jaakonaho J, Peura P (1989) Stimulation by oestradiol of the urinary excretion of perfluorooctanoic acid in the male rat. Pharmacol Toxicol 65:274–277PubMedCrossRefGoogle Scholar
  168. Yu WG, Liu W, Jin YH, Liu XH, Wang FQ, Liu L, Nakayama SF (2009) Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: a cross-foster study on chemical burden and thyroid hormone system. Environ Sci Technol 43:8416–8422PubMedCrossRefGoogle Scholar
  169. Zamir R, Athanasiadou M, Nahar N, Mamun MI, Mosihuzzaman M, Bergman A (2009) Persistent organohalogen contaminants in plasma from groups of humans with different occupations in Bangladesh. Chemosphere 74:453–459PubMedCrossRefGoogle Scholar
  170. Zeng HC, Li YY, Zhang L, Wang YJ, Chen J, Xia W, Lin Y, Wei J, Lv ZQ, Li M, Xu SQ (2011a) Prenatal exposure to perfluorooctanesulfonate in rat resulted in long-lasting changes of expression of synapsins and synaptophysin. Synapse 65:225–233PubMedCrossRefGoogle Scholar
  171. Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, Wei J, Xu SQ (2011b) Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology 32:130–139PubMedCrossRefGoogle Scholar
  172. Zoeller RT, Dowling ALS, Herzig CTA, Iannacone EA, Gauger KJ, Bansal R (2002) Thyroid hormone, brain development, and the environment. Environ Health Perspect 110:355–361PubMedCrossRefGoogle Scholar
  173. Zushi Y, Tamada M, Kanai Y, Masunaga S (2010) Time trends of perfluorinated compounds from the sediment core of Tokyo Bay, Japan (1950s–2004). Environ Pollut 158:756–763PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Protection DivisionNorwegian Defence Research EstablishmentKjellerNorway

Personalised recommendations