Archives of Toxicology

, Volume 86, Issue 8, pp 1233–1250 | Cite as

Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update

  • Neife Aparecida Guinaim dos Santos
  • Maria Augusta Carvalho Rodrigues
  • Nadia Maria Martins
  • Antonio Cardozo dos Santos
Review Article

Abstract

Cisplatin is a highly effective antitumor agent whose clinical application is limited by the inherent nephrotoxicity. The current measures of nephroprotection used in patients receiving cisplatin are not satisfactory, and studies have focused on the investigation of new possible protective strategies. Many pathways involved in cisplatin nephrotoxicity have been delineated and proposed as targets for nephroprotection, and many new potentially protective agents have been reported. The multiple pathways which lead to renal damage and renal cell death have points of convergence and share some common modulators. The most frequent event among all the described pathways is the oxidative stress that acts as both a trigger and a result. The most exploited pathways, the proposed protective strategies, the achievements obtained so far as well as conflicting data are summarized and discussed in this review, providing a general view of the knowledge accumulated with past and recent research on this subject.

Keywords

Cisplatin Nephrotoxicity Nephroprotection Oxidative stress Apoptosis Molecular mechanisms Mitochondria 

References

  1. Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66PubMedCrossRefGoogle Scholar
  2. Ajith TA, Abhishek G, Roshny D, Sudheesh NP (2009) Co-supplementation of single and multi doses of vitamins C and E ameliorates cisplatin-induced acute renal failure in mice. Exp Toxicol Pathol 61:565–571PubMedCrossRefGoogle Scholar
  3. Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183PubMedCrossRefGoogle Scholar
  4. Antunes LM, Darin JD, Bianchi MD (2000) Protective effects of vitamin c against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol Res 41:405–411PubMedCrossRefGoogle Scholar
  5. Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23:460–464PubMedCrossRefGoogle Scholar
  6. Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A (2005) Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology 212:116–123PubMedCrossRefGoogle Scholar
  7. Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH (2005) Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci 76:2125–2135PubMedCrossRefGoogle Scholar
  8. Bae EH, Lee J, Ma SK, Kim IJ, Frokiaer J, Nielsen S, Kim SY, Kim SW (2009) Alpha-lipoic acid prevents cisplatin-induced acute kidney injury in rats. Nephrol Dial Transplant 24:2692–2700PubMedCrossRefGoogle Scholar
  9. Baek SM, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK (2003) Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J Lab Clin Med 142:178–186PubMedCrossRefGoogle Scholar
  10. Bajorin DF, Bosl GJ, Alcock NW, Niedzwiecki D, Gallina E, Shurgot B (1986) Pharmacokinetics of cis-diamminedichloroplatinum(II) after administration in hypertonic saline. Cancer Res 46:5969–5972PubMedGoogle Scholar
  11. Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV (1998) Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity. Kidney Int 54:1562–1569PubMedCrossRefGoogle Scholar
  12. Barnes PJ (1997) Nuclear factor-kappa B. Int J Biochem Cell Biol 29:867–870PubMedCrossRefGoogle Scholar
  13. Bauer MK, Vogt M, Los M, Siegel J, Wesselborg S, Schulze-Osthoff K (1998) Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J Biol Chem 273:8048–8055PubMedCrossRefGoogle Scholar
  14. Beehler CJ, Ely ME, Rutledge KS, Simchuk ML, Reiss OK, Shanley PF, Repine JE (1994) Toxic effects of dimethylthiourea in rats. J Lab Clin Med 123:73–80PubMedGoogle Scholar
  15. Benoehr P, Krueth P, Bokemeyer C, Grenz A, Osswald H, Hartmann JT (2005) Nephroprotection by theophylline in patients with cisplatin chemotherapy: a randomized, single-blinded, placebo-controlled trial. J Am Soc Nephrol 16:452–458PubMedCrossRefGoogle Scholar
  16. Beyaert R, Fiers W (1994) Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett 340:9–16PubMedCrossRefGoogle Scholar
  17. Block KI, Gyllenhaal C (2005) Commentary: the pharmacological antioxidant amifostine—implications of recent research for integrative cancer care. Integr Cancer Ther 4:329–351PubMedCrossRefGoogle Scholar
  18. Bonegio R, Lieberthal W (2002) Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens 11:301–308PubMedCrossRefGoogle Scholar
  19. Boven E, Verschraagen M, Hulscher TM, Erkelens CA, Hausheer FH, Pinedo HM, van der Vijgh WJ (2002) BNP7787, a novel protector against platinum-related toxicities, does not affect the efficacy of cisplatin or carboplatin in human tumour xenografts. Eur J Cancer 38:1148–1156PubMedCrossRefGoogle Scholar
  20. Brouwers EE, Huitema AD, Schellens JH, Beijnen JH (2008) The effects of sulfur-containing compounds and gemcitabine on the binding of cisplatin to plasma proteins and DNA determined by inductively coupled plasma mass spectrometry and high performance liquid chromatography-inductively coupled plasma mass spectrometry. Anticancer Drugs 19:621–630PubMedCrossRefGoogle Scholar
  21. Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH, Wiemer EA (2011) Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat 14:22–34PubMedCrossRefGoogle Scholar
  22. Burns TF, El-Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181:231–239PubMedCrossRefGoogle Scholar
  23. Campbell NP, Kindler HL (2011) Update on malignant pleural mesothelioma. Semin Respir Crit Care Med 32:102–110PubMedCrossRefGoogle Scholar
  24. Campbell MT, Dagher P, Hile KL, Zhang H, Meldrum DR, Rink RC, Meldrum KK (2008) Tumor necrosis factor-alpha induces intrinsic apoptotic signaling during renal obstruction through truncated bid activation. J Urol 180:2694–2700PubMedCrossRefGoogle Scholar
  25. Candelaria M, Garcia-Arias A, Cetina L, Duenas-Gonzalez A (2006) Radiosensitizers in cervical cancer. Cisplatin and beyond. Radiat Oncol 1:15CrossRefGoogle Scholar
  26. Caro AA, Cederbaum AI (2004) Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol 44:27–42PubMedCrossRefGoogle Scholar
  27. Chang B, Nishikawa M, Sato E, Utsumi K, Inoue M (2002) L-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch Biochem Biophys 405:55–64PubMedCrossRefGoogle Scholar
  28. Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484PubMedCrossRefGoogle Scholar
  29. Cilenti L, Kyriazis GA, Soundarapandian MM, Stratico V, Yerkes A, Park KM, Sheridan AM, Alnemri ES, Bonventre JV, Zervos AS (2005) Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells. Am J Physiol Renal Physiol 288:F371–F379PubMedCrossRefGoogle Scholar
  30. Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67:93–130PubMedCrossRefGoogle Scholar
  31. Conklin KA (2004) Cancer chemotherapy and antioxidants. J Nutr 134:3201S–3204SPubMedGoogle Scholar
  32. Cornelison TL, Reed E (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50:147–158PubMedCrossRefGoogle Scholar
  33. Cullen KJ, Yang Z, Schumaker L, Guo Z (2007) Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomembr 39:43–50PubMedCrossRefGoogle Scholar
  34. Cummings BS, McHowat J, Schnellmann RG (2004) Role of an endoplasmic reticulum Ca2+ -independent phospholipase A2 in cisplatin-induced renal cell apoptosis. J Pharmacol Exp Ther 308:921–928PubMedCrossRefGoogle Scholar
  35. Cvitkovic E (1998) Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat Rev 24:265–281PubMedCrossRefGoogle Scholar
  36. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G (2000a) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123PubMedCrossRefGoogle Scholar
  37. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G (2000b) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739PubMedGoogle Scholar
  38. Dillioglugil MO, Maral Kir H, Gulkac MD, Ozon Kanli A, Ozdogan HK, Acar O, Dillioglugil O (2005) Protective effects of increasing vitamin E and a doses on cisplatin-induced oxidative damage to kidney tissue in rats. Urol Int 75:340–344PubMedCrossRefGoogle Scholar
  39. Do Amaral CL, Francescato HD, Coimbra TM, Costa RS, Darin JD, Antunes LM, Bianchi MdeL (2008) Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch Toxicol 82:363–370PubMedCrossRefGoogle Scholar
  40. Dong G, Luo J, Kumar V, Dong Z (2009) Inhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells. Am J Physiol Renal Physiol 298:F293–F300PubMedCrossRefGoogle Scholar
  41. dos Santos OF, Boim MA, Barros EJ, Pirotzky E, Braquet P, Schor N (1991a) Effect of platelet-activating factor antagonist BN 52063 on the nephrotoxicity of cisplatin. Lipids 26:1324–1328PubMedCrossRefGoogle Scholar
  42. Dos Santos OF, Boim MA, Barros EJ, Schor N (1991b) Role of platelet activating factor in gentamicin and cisplatin nephrotoxicity. Kidney Int 40:742–747PubMedCrossRefGoogle Scholar
  43. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42PubMedCrossRefGoogle Scholar
  44. Dumas M, de Gislain C, d’Athis P, Chadoint-Noudeau V, Escousse A, Guerrin J, Autissier N (1990) Influence of hydration on ultrafilterable platinum kinetics and kidney function in patients treated with cis-diamminedichloroplatinum(II). Cancer Chemother Pharmacol 26:278–282PubMedCrossRefGoogle Scholar
  45. Eastman A (1999) The mechanism of action of cisplatin: from adducts to apoptosis. I. In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, New York, pp 111–135Google Scholar
  46. El Sabbahy M, Vaidya VS (2011) Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdiscip Rev Syst Biol Med 3:606–618PubMedCrossRefGoogle Scholar
  47. El-Sayed el SM, Abd-Ellah MF, Attia SM (2008) Protective effect of captopril against cisplatin-induced nephrotoxicity in rats. Pak J Pharm Sci 21:255–261Google Scholar
  48. Enoksson M, Robertson JD, Gogvadze V, Bu P, Kropotov A, Zhivotovsky B, Orrenius S (2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 279:49575–49578PubMedCrossRefGoogle Scholar
  49. Faubel S, Ljubanovic D, Reznikov L, Somerset H, Dinarello CA, Edelstein CL (2004) Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int 66:2202–2213PubMedCrossRefGoogle Scholar
  50. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322:8–15PubMedCrossRefGoogle Scholar
  51. Francescato HD, Coimbra TM, Costa RS, Bianchi MdeL (2004) Protective effect of quercetin on the evolution of cisplatin-induced acute tubular necrosis. Kidney Blood Press Res 27:148–158PubMedCrossRefGoogle Scholar
  52. Frick GA, Ballentine R, Driever CW, Kramer WG (1979) Renal excretion kinetics of high-dose cis-dichlorodiammineplatinum(II) administered with hydration and mannitol diuresis. Cancer Treat Rep 63:13–16PubMedGoogle Scholar
  53. Gale GR, Morris CR, Atkins LM, Smith AB (1973) Binding of an antitumor platinum compound to cells as influenced by physical factors and pharmacologically active agents. Cancer Res 33:813–818PubMedGoogle Scholar
  54. Gandara DR, Wiebe VJ, Perez EA, Makuch RW, DeGregorio MW (1990) Cisplatin rescue therapy: experience with sodium thiosulfate, WR2721, and diethyldithiocarbamate. Crit Rev Oncol Hematol 10:353–365PubMedCrossRefGoogle Scholar
  55. Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67:1171–1176PubMedCrossRefGoogle Scholar
  56. Goffin J, Lacchetti C, Ellis PM, Ung YC, Evans WK (2010) First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: a systematic review. J Thorac Oncol 5:260–274PubMedCrossRefGoogle Scholar
  57. Goldstein RS, Mayor GH (1983) Minireview. The nephrotoxicity of cisplatin. Life Sci 32:685–690PubMedCrossRefGoogle Scholar
  58. Gonzales-Vitale JC, Hayes DM, Cvitkovic E, Sternberg SS (1977) The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer 39:1362–1371PubMedCrossRefGoogle Scholar
  59. Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663PubMedGoogle Scholar
  60. Goossens V, Grooten J, De Vos K, Fiers W (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 92:8115–8119PubMedCrossRefGoogle Scholar
  61. Gordon JA, Gattone VH 2nd (1986) Mitochondrial alterations in cisplatin-induced acute renal failure. Am J Physiol 250:F991–F998PubMedGoogle Scholar
  62. Guastalla JP, Vermorken JB, Wils JA, George M, Scotto V, Nooij M, ten Bokkel Huinnink WW, Dalesio O, Renard J (1994) Phase II trial for intraperitoneal cisplatin plus intravenous sodium thiosulphate in advanced ovarian carcinoma patients with minimal residual disease after cisplatin-based chemotherapy–a phase II study of the EORTC Gynaecological Cancer Cooperative Group. Eur J Cancer 30A:45–49PubMedCrossRefGoogle Scholar
  63. Han X, Yue J, Chesney RW (2009) Functional TauT protects against acute kidney injury. J Am Soc Nephrol 20:1323–1332PubMedCrossRefGoogle Scholar
  64. Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61PubMedGoogle Scholar
  65. Hanigan MH, Gallagher BC, Taylor PT Jr, Large MK (1994) Inhibition of gamma-glutamyl transpeptidase activity by acivicin in vivo protects the kidney from cisplatin-induced toxicity. Cancer Res 54:5925–5929PubMedGoogle Scholar
  66. Hanigan MH, Lykissa ED, Townsend DM, Ou CN, Barrios R, Lieberman MW (2001) Gamma-glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin. Am J Pathol 159:1889–1894PubMedCrossRefGoogle Scholar
  67. Hanigan MH, Deng M, Zhang L, Taylor PT Jr, Lapus MG (2005) Stress response inhibits the nephrotoxicity of cisplatin. Am J Physiol Renal Physiol 288:F125–F132PubMedCrossRefGoogle Scholar
  68. Hannemann J, Duwe J, Baumann K (1991) Iron- and ascorbic acid-induced lipid peroxidation in renal microsomes isolated from rats treated with platinum compounds. Cancer Chemother Pharmacol 28:427–433PubMedCrossRefGoogle Scholar
  69. Hausheer FH, Kanter P, Cao S, Haridas K, Seetharamulu P, Reddy D, Petluru P, Zhao M, Murali D, Saxe JD, Yao S, Martinez N, Zukowski A, Rustum YM (1998) Modulation of platinum-induced toxicities and therapeutic index: mechanistic insights and first- and second-generation protecting agents. Semin Oncol 25:584–599PubMedGoogle Scholar
  70. Hausheer FH, Shanmugarajah D, Leverett BD, Chen X, Huang Q, Kochat H, Petluru PN, Parker AR (2010) Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of gamma-glutamyl transpeptidase. Cancer Chemother Pharmacol 65:941–951PubMedCrossRefGoogle Scholar
  71. Hausheer FH, Ding D, Shanmugarajah D, Leverett BD, Huang Q, Chen X, Kochat H, Ayala PY, Petluru PN, Parker AR (2011a) Accumulation of BNP7787 in human renal proximal tubule cells. J Pharm Sci 100:3977–3984PubMedCrossRefGoogle Scholar
  72. Hausheer FH, Parker AR, Petluru PN, Jair KW, Chen S, Huang Q, Chen X, Ayala PY, Shanmugarajah D, Kochat H (2011b) Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of human aminopeptidase N. Cancer Chemother Pharmacol 67:381–391PubMedCrossRefGoogle Scholar
  73. Hayes DM, Cvitkovic E, Golbey RB, Scheiner E, Helson L, Krakoff IH (1977) High dose cis-platinum diammine dichloride: amelioration of renal toxicity by mannitol diuresis. Cancer 39:1372–1381PubMedCrossRefGoogle Scholar
  74. Heidemann HT, Muller S, Mertins L, Stepan G, Hoffmann K, Ohnhaus EE (1989) Effect of aminophylline on cisplatin nephrotoxicity in the rat. Br J Pharmacol 97:313–318PubMedCrossRefGoogle Scholar
  75. Heinecke JW, Kawamura M, Suzuki L, Chait A (1993) Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms. J Lipid Res 34:2051–2061PubMedGoogle Scholar
  76. Helm CW, States JC (2009) Enhancing the efficacy of cisplatin in ovarian cancer treatment—could arsenic have a role. J Ovarian Res 2:2PubMedCrossRefGoogle Scholar
  77. Hofmann J, Fiebig HH, Winterhalter BR, Berger DP, Grunicke H (1990) Enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by quercetin. Int J Cancer 45:536–539PubMedCrossRefGoogle Scholar
  78. Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ (2007) Cisplatin-induced nephrotoxicity causes altered renal hemodynamics in Wistar Kyoto and spontaneously hypertensive rats: role of augmented renal alpha-adrenergic responsiveness. Exp Toxicol Pathol 59:253–260PubMedCrossRefGoogle Scholar
  79. Iguchi T, Nishikawa M, Chang B, Muroya O, Sato EF, Nakatani T, Inoue M (2004) Edaravone inhibits acute renal injury and cyst formation in cisplatin-treated rat kidney. Free Radic Res 38:333–341PubMedCrossRefGoogle Scholar
  80. Ikeda S, Fukuzaki A, Kaneto H, Ishidoya S, Orikasa S (1999) Role of protein kinase C in cisplatin nephrotoxicity. Int J Urol 6:245–250PubMedCrossRefGoogle Scholar
  81. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302PubMedCrossRefGoogle Scholar
  82. Ismaili N, Amzerin M, Elmajjaoui S, Droz JP, Flechon A, Errihani H (2011a) The role of chemotherapy in the management of bladder cancer. Prog Urol 21:369–382PubMedCrossRefGoogle Scholar
  83. Ismaili N, Amzerin M, Flechon A (2011b) Chemotherapy in advanced bladder cancer: current status and future. J Hematol Oncol 4:35PubMedCrossRefGoogle Scholar
  84. Jackson AM, Rose BD, Graff LG, Jacobs JB, Schwartz JH, Strauss GM, Yang JP, Rudnick MR, Elfenbein IB, Narins RG (1984) Thrombotic microangiopathy and renal failure associated with antineoplastic chemotherapy. Ann Intern Med 101:41–44PubMedGoogle Scholar
  85. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498PubMedCrossRefGoogle Scholar
  86. Jia Z, Wang N, Aoyagi T, Wang H, Liu H, Yang T (2011) Amelioration of cisplatin nephrotoxicity by genetic or pharmacologic blockade of prostaglandin synthesis. Kidney Int 79:77–88PubMedCrossRefGoogle Scholar
  87. Jiang M, Dong Z (2008) Regulation and pathological role of p53 in cisplatin nephrotoxicity. J Pharmacol Exp Ther 327:300–307PubMedCrossRefGoogle Scholar
  88. Jiang M, Yi X, Hsu S, Wang CY, Dong Z (2004) Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am J Physiol Renal Physiol 287:F1140–F1147PubMedCrossRefGoogle Scholar
  89. Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L, Dong Z (2006) Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene 25:4056–4066PubMedCrossRefGoogle Scholar
  90. Jiang M, Wei Q, Pabla N, Dong G, Wang CY, Yang T, Smith SB, Dong Z (2007) Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 73:1499–1510PubMedCrossRefGoogle Scholar
  91. Johnson AL, Ratajczak C, Haugen MJ, Liu HK, Woods DC (2007) Tumor necrosis factor-related apoptosis inducing ligand expression and activity in hen granulosa cells. Reproduction 133:609–616PubMedCrossRefGoogle Scholar
  92. Jones MM, Basinger MA, Field L, Holscher MA (1991) Coadministration of dimethyl sulfoxide reduces cisplatin nephrotoxicity. Anticancer Res 11:1939–1942PubMedGoogle Scholar
  93. Kachadourian R, Leitner HM, Day BJ (2007) Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: a role for glutathione depletion. Int J Oncol 31:161–168PubMedGoogle Scholar
  94. Kadikoylu G, Bolaman Z, Demir S, Balkaya M, Akalin N, Enli Y (2004) The effects of desferrioxamine on cisplatin-induced lipid peroxidation and the activities of antioxidant enzymes in rat kidneys. Hum Exp Toxicol 23:29–34PubMedCrossRefGoogle Scholar
  95. Katsuda H, Yamashita M, Katsura H, Yu J, Waki Y, Nagata N, Sai Y, Miyamoto K (2010) Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity. Biol Pharm Bull 33:1867–1871PubMedCrossRefGoogle Scholar
  96. Katzenstein HM, Chang KW, Krailo M, Chen Z, Finegold MJ, Rowland J, Reynolds M, Pappo A, London WB, Malogolowkin M (2009) Amifostine does not prevent platinum-induced hearing loss associated with the treatment of children with hepatoblastoma: a report of the Intergroup Hepatoblastoma Study P9645 as a part of the Children’s Oncology Group. Cancer 115:5828–5835PubMedCrossRefGoogle Scholar
  97. Kaushal GP, Kaushal V, Hong X, Shah SV (2001) Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int 60:1726–1736PubMedCrossRefGoogle Scholar
  98. Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, Homesley H, Belpomme D, Glick J (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14:2101–2112PubMedGoogle Scholar
  99. Khan AH, Sattar MA, Abdullah NA, Johns EJ (2007) Influence of cisplatin-induced renal failure on the alpha(1)-adrenoceptor subtype causing vasoconstriction in the kidney of the rat. Eur J Pharmacol 569:110–118PubMedCrossRefGoogle Scholar
  100. Kintzel PE (2001) Anticancer drug-induced kidney disorders. Drug Saf 24:19–38PubMedCrossRefGoogle Scholar
  101. Koyner JL, Sher Ali R, Murray PT (2008) Antioxidants. Do they have a place in the prevention or therapy of acute kidney injury? Nephron Exp Nephrol 109:e109–e117PubMedCrossRefGoogle Scholar
  102. Kruidering M, Maasdam DH, Prins FA, de Heer E, Mulder GJ, Nagelkerke JF (1994) Evaluation of nephrotoxicity in vitro using a suspension of highly purified porcine proximal tubular cells and characterization of the cells in primary culture. Exp Nephrol 2:324–344PubMedGoogle Scholar
  103. Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke JF (1997) Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther 280:638–649PubMedGoogle Scholar
  104. Kuhar M, Sen S, Singh N (2006) Role of mitochondria in quercetin-enhanced chemotherapeutic response in human non-small cell lung carcinoma H-520 cells. Anticancer Res 26:1297–1303PubMedGoogle Scholar
  105. Kuhlmann MK, Burkhardt G, Kohler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12:2478–2480PubMedCrossRefGoogle Scholar
  106. Lau AH (1999) Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295–1298PubMedCrossRefGoogle Scholar
  107. Laughton MJ, Halliwell B, Evans PJ, Hoult JR (1989) Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 38:2859–2865PubMedCrossRefGoogle Scholar
  108. Launay-Vacher V, Rey JB, Isnard-Bagnis C, Deray G, Daouphars M (2008) Prevention of cisplatin nephrotoxicity: state of the art and recommendations from the European Society of Clinical Pharmacy Special Interest Group on Cancer Care. Cancer Chemother Pharmacol 61:903–909PubMedCrossRefGoogle Scholar
  109. Lee RH, Song JM, Park MY, Kang SK, Kim YK, Jung JS (2001) Cisplatin-induced apoptosis by translocation of endogenous Bax in mouse collecting duct cells. Biochem Pharmacol 62:1013–1023PubMedCrossRefGoogle Scholar
  110. Lee S, Kim W, Moon SO, Sung MJ, Kim DH, Kang KP, Jang YB, Lee JE, Jang KY, Park SK (2006) Rosiglitazone ameliorates cisplatin-induced renal injury in mice. Nephrol Dial Transplant 21:2096–2105PubMedCrossRefGoogle Scholar
  111. Lehane D, Winston A, Gray R, Daskal Y (1979) The effect of diuretic pre-treatment on clinical, morphological and ultrastructural cis-platinum induced nephrotoxicity. Int J Radiat Oncol Biol Phys 5:1393–1399PubMedCrossRefGoogle Scholar
  112. Li G, Sha SH, Zotova E, Arezzo J, Van de Water T, Schacht J (2002) Salicylate protects hearing and kidney function from cisplatin toxicity without compromising its oncolytic action. Lab Invest 82:585–596PubMedCrossRefGoogle Scholar
  113. Li M, Balamuthusamy S, Khan AM, Maderdrut JL, Simon EE, Batuman V (2010) Pituitary adenylate cyclase-activating polypeptide ameliorates cisplatin-induced acute kidney injury. Peptides 31:592–602PubMedCrossRefGoogle Scholar
  114. Li M, Balamuthusamy S, Khan AM, Maderdrut JL, Simon EE, Batuman V (2011) Pituitary adenylate cyclase-activating polypeptide prevents cisplatin-induced renal failure. J Mol Neurosci 43:58–66PubMedCrossRefGoogle Scholar
  115. Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270:F700–F708PubMedGoogle Scholar
  116. Lieberthal W, Menza SA, Levine JS (1998) Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol 274:F315–F327PubMedGoogle Scholar
  117. Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159PubMedCrossRefGoogle Scholar
  118. Liu H, Baliga R (2003) Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int 63:1687–1696PubMedCrossRefGoogle Scholar
  119. Liu H, Baliga R (2005) Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16:1985–1992PubMedCrossRefGoogle Scholar
  120. Liu H, Baliga M, Baliga R (2002) Effect of cytochrome P450 2E1 inhibitors on cisplatin-induced cytotoxicity to renal proximal tubular epithelial cells. Anticancer Res 22:863–868PubMedGoogle Scholar
  121. Lopez-Novoa JM (1999) Potential role of platelet activating factor in acute renal failure. Kidney Int 55:1672–1682PubMedCrossRefGoogle Scholar
  122. Losonczy G, Mathe C, Muller V, Szondy K, Moldvay J (2010) Incidence, risk factors and prevention of cisplatin-induced nephrotoxicity in patients with lung cancer. Magy Onkol 54:289–296PubMedCrossRefGoogle Scholar
  123. Ludwig T, Riethmuller C, Gekle M, Schwerdt G, Oberleithner H (2004) Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int 66:196–202PubMedCrossRefGoogle Scholar
  124. Luke DR, Vadiei K, Lopez-Berestein G (1992) Role of vascular congestion in cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 7:1–7PubMedGoogle Scholar
  125. Lynch ED, Gu R, Pierce C, Kil J (2005) Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear Res 201:81–89PubMedCrossRefGoogle Scholar
  126. Masereeuw R, Terlouw SA, van Aubel RA, Russel FG, Miller DS (2000) Endothelin B receptor-mediated regulation of ATP-driven drug secretion in renal proximal tubule. Mol Pharmacol 57:59–67PubMedGoogle Scholar
  127. Matsushima H, Yonemura K, Ohishi K, Hishida A (1998) The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 131:518–526PubMedCrossRefGoogle Scholar
  128. Milner LS, Wei SH, Houser MT (1993) Enhancement of renal and hepatic glutathione metabolism by dimethylthiourea. Toxicol Lett 66:117–123PubMedCrossRefGoogle Scholar
  129. Mishima K, Baba A, Matsuo M, Itoh Y, Oishi R (2006) Protective effect of cyclic AMP against cisplatin-induced nephrotoxicity. Free Radic Biol Med 40:1564–1577PubMedCrossRefGoogle Scholar
  130. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103PubMedCrossRefGoogle Scholar
  131. Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC, Billstrom MA, Henson PM, Johnson GL, Worthen GS (1999) Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest 103:851–858PubMedCrossRefGoogle Scholar
  132. Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23:2797–2808PubMedCrossRefGoogle Scholar
  133. Old LJ (1988) Tumor necrosis factor. Sci Am 258(59–60):69–75Google Scholar
  134. Olivero OA, Chang PK, Lopez-Larraza DM, Semino-Mora MC, Poirier MC (1997) Preferential formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat Res 391:79–86PubMedCrossRefGoogle Scholar
  135. Ormstad K, Uehara N (1982) Renal transport and disposition of Na-2-mercaptoethane sulfonate disulfide (dimesna) in the rat. FEBS Lett 150:354–358PubMedCrossRefGoogle Scholar
  136. Ozen S, Akyol O, Iraz M, Sogut S, Ozugurlu F, Ozyurt H, Odaci E, Yildirim Z (2004) Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24:27–35PubMedCrossRefGoogle Scholar
  137. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007PubMedCrossRefGoogle Scholar
  138. Pabla N, Murphy RF, Liu K, Dong Z (2009) The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 296:F505–F511PubMedCrossRefGoogle Scholar
  139. Pabla N, Dong G, Jiang M, Huang S, Kumar MV, Messing RO, Dong Z (2011) Inhibition of PKCdelta reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer. J Clin Invest 121:2709–2722PubMedCrossRefGoogle Scholar
  140. Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865PubMedCrossRefGoogle Scholar
  141. Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208PubMedCrossRefGoogle Scholar
  142. Peyrou M, Hanna PE, Cribb AE (2007) Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci 99:346–353PubMedCrossRefGoogle Scholar
  143. Pirotzky E, Guilmard C, Sidoti C, Ivanow F, Principe P, Braquet P (1990) Platelet-activating factor antagonist, BN-52021 protects against cis-diamminedichloroplatinum nephrotoxicity in the rat. Ren Fail 12:171–176PubMedCrossRefGoogle Scholar
  144. Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842PubMedGoogle Scholar
  145. Ramesh G, Reeves WB (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 285:F610–F618PubMedGoogle Scholar
  146. Ramesh G, Reeves WB (2005) p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol 289:F166–F174PubMedCrossRefGoogle Scholar
  147. Ries F, Klastersky J (1986) Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 8:368–379PubMedGoogle Scholar
  148. Rjiba-Touati K, Ayed-Boussema I, Bouaziz C, Belarbia A, Azzabi A, Achour A, Hassen W, Bacha H (2012) Protective effect of erythropoietin against cisplatin-induced nephrotoxicity in rats: antigenotoxic and antiapoptotic effect. Drug Chem Toxicol 35:89–95PubMedCrossRefGoogle Scholar
  149. Rodrigues MA, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NA, Santos AC (2010) Carvedilol protects against the renal mitochondrial toxicity induced by cisplatin in rats. Mitochondrion 10:46–53Google Scholar
  150. Rodrigues MA, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NA, Santos AC (2011) Carvedilol protects against cisplatin-induced oxidative stress, redox state unbalance and apoptosis in rat kidney mitochondria. Chem Biol Interact 189:45–51Google Scholar
  151. Rosenberg B (1985) Fundamental studies with cisplatin. Cancer 55:2303–2306PubMedCrossRefGoogle Scholar
  152. Rosenberg B, Vancamp L, Krigas T (1965) Inhibition of cell division in Escherichia Coli by electrolysis products from a platinum electrode. Nature 205:698–699PubMedCrossRefGoogle Scholar
  153. Rosenberg B, Renshaw E, Vancamp L, Hartwick J, Drobnik J (1967) Platinum-induced filamentous growth in Escherichia coli. J Bacteriol 93:716–721PubMedGoogle Scholar
  154. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386PubMedCrossRefGoogle Scholar
  155. Sadzuka Y, Shoji T, Takino Y (1992) Mechanism of the increase in lipid peroxide induced by cisplatin in the kidneys of rats. Toxicol Lett 62:293–300PubMedCrossRefGoogle Scholar
  156. Saleh S, Ain-Shoka AA, El-Demerdash E, Khalef MM (2009) Protective effects of the angiotensin II receptor blocker losartan on cisplatin-induced kidney injury. Chemotherapy 55:399–406PubMedCrossRefGoogle Scholar
  157. Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Lopez-Novoa JM, Morales AI (2011a) An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol 41:803–821PubMedCrossRefGoogle Scholar
  158. Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Perez-Barriocanal F, Morales AI, Lopez-Novoa JM (2011b) Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrol Dial Transplant 26:3484–3495PubMedCrossRefGoogle Scholar
  159. Santos NA (2012) Oxidants and inhibition of cisplatin-induced kidney injury: role of mitochondria. In: Spitz DR (ed) Oxidative Stress in Cancer Biology and Therapy, 1st edn. Springer, New York, pp 407–425CrossRefGoogle Scholar
  160. Santos NA, Catao CS, Martins NM, Curti C, Bianchi ML, Santos AC (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 81:495–504PubMedCrossRefGoogle Scholar
  161. Santos NA, Bezerra CS, Martins NM, Curti C, Bianchi ML, Santos AC (2008) Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol 61:145–155PubMedCrossRefGoogle Scholar
  162. Santoso JT, Lucci JA 3rd, Coleman RL, Schafer I, Hannigan EV (2003) Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol 52:13–18PubMedCrossRefGoogle Scholar
  163. Sastry J, Kellie SJ (2005) Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 22:441–445PubMedCrossRefGoogle Scholar
  164. Satoh M, Kashihara N, Fujimoto S, Horike H, Tokura T, Namikoshi T, Sasaki T, Makino H (2003) A novel free radical scavenger, edarabone, protects against cisplatin-induced acute renal damage in vitro and in vivo. J Pharmacol Exp Ther 305:1183–1190PubMedCrossRefGoogle Scholar
  165. Schenellmann RG (2001) Toxic responses of the kidney. In: Kalassen CD (ed) Casarett and Doull’s toxicology. The basic science of poisons, 6th edn. McGraw-Hill, New York, pp 491–514Google Scholar
  166. Schmalhausen EV, Zhlobek EB, Shalova IN, Firuzi O, Saso L, Muronetz VI (2007) Antioxidant and prooxidant effects of quercetin on glyceraldehyde-3-phosphate dehydrogenase. Food Chem Toxicol 45:1988–1993PubMedCrossRefGoogle Scholar
  167. Schrier RW, Chen YC, Cadnapaphornchai MA (2004) From finch to fish to man: role of aquaporins in body fluid and brain water regulation. Neuroscience 129:897–904PubMedCrossRefGoogle Scholar
  168. Sergediene E, Jonsson K, Szymusiak H, Tyrakowska B, Rietjens IM, Cenas N (1999) Prooxidant toxicity of polyphenolic antioxidants to HL-60 cells: description of quantitative structure-activity relationships. FEBS Lett 462:392–396PubMedCrossRefGoogle Scholar
  169. Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq MP (2008) Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 13:11–32PubMedCrossRefGoogle Scholar
  170. Seth R, Yang C, Kaushal V, Shah SV, Kaushal GP (2005) p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem 280:31230–31239PubMedCrossRefGoogle Scholar
  171. Sharma H, Sen S, Singh N (2005) Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol Ther 4:949–955PubMedCrossRefGoogle Scholar
  172. Sharp PA (2003) Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol 35:288–291PubMedCrossRefGoogle Scholar
  173. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821PubMedCrossRefGoogle Scholar
  174. Sleijfer DT, Offerman JJ, Mulder NH, Verweij M, van der Hem GK, Schraffordt Koops HS, Meijer S (1987) The protective potential of the combination of verapamil and cimetidine on cisplatin-induced nephrotoxicity in man. Cancer 60:2823–2828PubMedCrossRefGoogle Scholar
  175. Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP (2000) Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense system. Pharmacol Toxicol 86:234–241PubMedCrossRefGoogle Scholar
  176. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245PubMedCrossRefGoogle Scholar
  177. Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4:565–573PubMedCrossRefGoogle Scholar
  178. Tanihara Y, Masuda S, Katsura T, Inui K (2009) Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol 78:1263–1271PubMedCrossRefGoogle Scholar
  179. Tarladacalisir YT, Kanter M, Uygun M (2008) Protective effects of vitamin C on cisplatin-induced renal damage: a light and electron microscopic study. Ren Fail 30:1–8PubMedCrossRefGoogle Scholar
  180. Tirosh O, Katzhendler Y, Barenholz Y, Ginsburg I, Kohen R (1996) Antioxidant properties of amidothionophosphates: novel antioxidant molecules. Free Radic Biol Med 20:421–432PubMedCrossRefGoogle Scholar
  181. Togna GI, Togna AR, Franconi M, Caprino L (2000) Cisplatin triggers platelet activation. Thromb Res 99:503–509PubMedCrossRefGoogle Scholar
  182. Townsend DM, Hanigan MH (2002) Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 300:142–148PubMedCrossRefGoogle Scholar
  183. Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH (2003) Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 14:1–10PubMedCrossRefGoogle Scholar
  184. Treskes M, Nijtmans LG, Fichtinger-Schepman AM, van der Vijgh WJ (1992) Effects of the modulating agent WR2721 and its main metabolites on the formation and stability of cisplatin-DNA adducts in vitro in comparison to the effects of thiosulphate and diethyldithiocarbamate. Biochem Pharmacol 43:1013–1019PubMedCrossRefGoogle Scholar
  185. Tsuruya K, Ninomiya T, Tokumoto M, Hirakawa M, Masutani K, Taniguchi M, Fukuda K, Kanai H, Kishihara K, Hirakata H, Iida M (2003) Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int 63:72–82PubMedCrossRefGoogle Scholar
  186. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedCrossRefGoogle Scholar
  187. Ueda N, Kaushal GP, Shah SV (2000) Apoptotic mechanisms in acute renal failure. Am J Med 108:403–415PubMedCrossRefGoogle Scholar
  188. Vondalova Blanarova O, Jelinkova I, Szoor A, Skender B, Soucek K, Horvath V, Vaculova A, Andera L, Sova P, Szollosi J, Hofmanova J, Vereb G, Kozubik A (2011) Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis 32:42–51PubMedCrossRefGoogle Scholar
  189. Wainford RD, Weaver RJ, Stewart KN, Brown P, Hawksworth GM (2008) Cisplatin nephrotoxicity is mediated by gamma glutamyltranspeptidase, not via a C-S lyase governed biotransformation pathway. Toxicology 249:184–193PubMedCrossRefGoogle Scholar
  190. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633PubMedCrossRefGoogle Scholar
  191. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320PubMedCrossRefGoogle Scholar
  192. Ward JP (1975) Gamma-glutamyl transpeptidase. A sensitive indicator of renal ischaemic injury in experimental animals and renal homograft rejection in man. Ann R Coll Surg Engl 57:248–261PubMedGoogle Scholar
  193. Wei Q, Dong G, Franklin J, Dong Z (2007a) The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int 72:53–62PubMedCrossRefGoogle Scholar
  194. Wei Q, Dong G, Yang T, Megyesi J, Price PM, Dong Z (2007b) Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 293:F1282–F1291PubMedCrossRefGoogle Scholar
  195. Werner M, Costa MJ, Mitchell LG, Nayar R (1995) Nephrotoxicity of xenobiotics. Clin Chim Acta 237:107–154PubMedCrossRefGoogle Scholar
  196. Winston JA, Safirstein R (1985) Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am J Physiol 249:F490–F496PubMedGoogle Scholar
  197. Wong E, Giandomenico CM (1999) Current status of platinum-based antitumor drugs. Chem Rev 99:2451–2466PubMedCrossRefGoogle Scholar
  198. Wu XX, Kakehi Y (2009) Enhancement of lexatumumab-induced apoptosis in human solid cancer cells by Cisplatin in caspase-dependent manner. Clin Cancer Res 15:2039–2047PubMedCrossRefGoogle Scholar
  199. Wu YJ, Muldoon LL, Neuwelt EA (2005) The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J Pharmacol Exp Ther 312:424–431PubMedCrossRefGoogle Scholar
  200. Yamakawa T, Eguchi S, Matsumoto T, Yamakawa Y, Numaguchi K, Miyata I, Reynolds CM, Motley ED, Inagami T (1999) Intracellular signaling in rat cultured vascular smooth muscle cells: roles of nuclear factor-kappaB and p38 mitogen-activated protein kinase on tumor necrosis factor-alpha production. Endocrinology 140:3562–3572PubMedCrossRefGoogle Scholar
  201. Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 12:5817–5825PubMedCrossRefGoogle Scholar
  202. Yang C, Kaushal V, Haun RS, Seth R, Shah SV, Kaushal GP (2008) Transcriptional activation of caspase-6 and -7 genes by cisplatin-induced p53 and its functional significance in cisplatin nephrotoxicity. Cell Death Differ 15:530–544PubMedCrossRefGoogle Scholar
  203. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124PubMedCrossRefGoogle Scholar
  204. Yee MS, Blakley BW, Begleiter A, Leith M (2008) Delayed sodium thiosulphate administration reduces cisplatin efficacy on mouse EMT6 tumour cells in vitro. J Otolaryngol Head Neck Surg 37:638–641PubMedGoogle Scholar
  205. Yonezawa A, Masuda S, Nishihara K, Yano I, Katsura T, Inui K (2005) Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem Pharmacol 70:1823–1831PubMedCrossRefGoogle Scholar
  206. Zhang L, Hanigan MH (2003) Role of cysteine S-conjugate beta-lyase in the metabolism of cisplatin. J Pharmacol Exp Ther 306:988–994PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Neife Aparecida Guinaim dos Santos
    • 1
  • Maria Augusta Carvalho Rodrigues
    • 1
  • Nadia Maria Martins
    • 1
  • Antonio Cardozo dos Santos
    • 1
  1. 1.Department of Clinical, Toxicological Analyses and Food Sciences of School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations