Archives of Toxicology

, Volume 86, Issue 3, pp 345–391 | Cite as

Antioxidant activity of food constituents: an overview

  • İlhami GülçinEmail author
Review Article


Recently, there has been growing interest in research into the role of plant-derived antioxidants in food and human health. The beneficial influence of many foodstuffs and beverages including fruits, vegetables, tea, coffee, and cacao on human health has been recently recognized to originate from their antioxidant activity. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food constituents are reviewed and presented. Also, the general chemistry underlying the assays in the present paper was clarified. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Fe3+–Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical scavenging, superoxide anion radical (O 2 ·− ) scavenging, hydrogen peroxide (H2O2) scavenging, hydroxyl radical (OH·) scavenging, singlet oxygen (1O2) quenching assay and nitric oxide radical (NO·) scavenging assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods which are currently used for detection of antioxidant properties food components. This review consists of two main sections. The first section is devoted to main components in the foodstuffs and beverages. The second general section is some definitions of the main antioxidant methods commonly used for determination of antioxidant activity of components in the foodstuffs and beverages. In addition, there are given some chemical and kinetic basis and technical details of the used methods.


Antioxidants Antioxidant activity Food constituent Antioxidant methods Reactive oxygen species 


  1. Abraham MH, Grellier PL, Prior DV, Morris JJ, Taylor PJ (1990) Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. J Chem Soc Perkin Trans 2:521–529Google Scholar
  2. Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37PubMedCrossRefGoogle Scholar
  3. Alcolea JF, Cano A, Acosta M, Arnao MB (2002) Hydrophilic and lipophilic antioxidant activities of grapes. Nahrung 46:353–356PubMedCrossRefGoogle Scholar
  4. Alho H, Leinonen J (1999) Total antioxidant activity measured by chemiluminescence methods. Method Enzymol 299:3–15CrossRefGoogle Scholar
  5. Alho H, Leinonen JS, Erhola M, Lonnrot K, Aejmelaeus R (1998) Assay of antioxidant capacity of human plasma and CSF in aging and disease. Restor Neurol Neurosci 12:159–165PubMedGoogle Scholar
  6. Alonso AM, Dominguez C, Guillen DA, Barroso CG (2002) Determination of antioxidant power of red and white wines by a new electrochemical method and its correlation with polyphenolic content. J Agric Food Chem 50:3112–3115PubMedCrossRefGoogle Scholar
  7. Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004) Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84:551–562CrossRefGoogle Scholar
  8. Ames B (1996) Dietary carcinogens and anticarcinogenes. Grasas y Aceites 47:186–196CrossRefGoogle Scholar
  9. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922PubMedCrossRefGoogle Scholar
  10. Andjelkovic M, Camp JV, Meulenaer BD, Depaemelaere G, Socaciu C, Verloo M, Verhe R (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98:23–31CrossRefGoogle Scholar
  11. Apak R, Güçlü K, Özyürek M, Karademir SE, Altun M (2005) Total antioxidant capacity assay of human serum using copper(II)- neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res 39:949–961PubMedCrossRefGoogle Scholar
  12. Apak R, Güçlü K, Özyürek M, Karademir SE, Erçag E (2006) The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int J Food Sci Nut 57:292–304CrossRefGoogle Scholar
  13. Apak R, Güçlü K, Özyürek M, Çelik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160:413–419CrossRefGoogle Scholar
  14. ArasHisar Ş, Hisar O, Beydemir Ş, Gülçin İ, Yanık T (2004) Effect of vitamin E on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Acta Vet Hung 52:413–422CrossRefGoogle Scholar
  15. Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419–421CrossRefGoogle Scholar
  16. Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599PubMedCrossRefGoogle Scholar
  17. Aruoma OI (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol 62:671–683Google Scholar
  18. Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Evaluation of the antioxidant and proantioxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885CrossRefGoogle Scholar
  19. Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N (2001) Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76:1895–1904PubMedCrossRefGoogle Scholar
  20. Atsumi T, Iwakura I, Fujisawa S, Ueha T (2001) Reactive oxygen species generation and photo-cytotoxicity of eugenol in solutions of various pH. Biomaterials 22:1459–1466PubMedCrossRefGoogle Scholar
  21. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51:6657–6662PubMedCrossRefGoogle Scholar
  22. Balaydın HT, Gülçin İ, Menzek A, Göksu S, Şahin E (2010) Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J Enzyme Inhib Med Chem 25:685–695PubMedCrossRefGoogle Scholar
  23. Barclay LRC, Vinqvist MR, Mukai K, Itoh S, Morimoto H (1993) Chainbreaking phenolic antioxidants: steric and electronic effects in polyalkylchromanols, tocopherol analogs, hydroquinons, and superior antioxidants of polyalkylbenzochromanol and naphthofuran class. J Org Chem 58:7416–7420CrossRefGoogle Scholar
  24. Bartosz G, Janaszewska A, Ertel D, Bartosz M (1998) Simple determination of peroxyl radical-trapping capacity. Biochem Mol Biol Int 46:519–528PubMedGoogle Scholar
  25. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287PubMedCrossRefGoogle Scholar
  26. Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844PubMedCrossRefGoogle Scholar
  27. Beecher GR (1999) In antioxidant food supplements in human health. In: Packer L, Hiramatsu M, Yoshikawa T (eds) Academic Press, New YorkGoogle Scholar
  28. Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM (1986) The antioxidant role of vitamin C. Free Radical Bio Med 2:419–444CrossRefGoogle Scholar
  29. Benzie IFF (1996) An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clin Biochem 111–116Google Scholar
  30. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239:70–76PubMedCrossRefGoogle Scholar
  31. Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol 299:15–27CrossRefGoogle Scholar
  32. Benzie IFF, Szeto YT (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47:633–636PubMedCrossRefGoogle Scholar
  33. Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236PubMedCrossRefGoogle Scholar
  34. Berges A, Van Nassauw L, Timmermans JP, Vrints C (2007) Time-dependent expression pattern of nitric oxide and superoxide after myocardial infarction in rats. Pharmacol Res 55:72–79PubMedCrossRefGoogle Scholar
  35. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200CrossRefGoogle Scholar
  36. Bocco A, Cuvelier ME, Richard H, Berset C (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129CrossRefGoogle Scholar
  37. Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Lebensm Wissen Technol 30:609–615Google Scholar
  38. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355PubMedCrossRefGoogle Scholar
  39. Bors W, Heller W, Michael C, Stettmaier K (1996) Flavonoids and polyphenols: chemistry and biology. In: Cadenas E, Packer L (eds) Handbook of antioxidants. Marcel Dekker, New York, pp 409–466Google Scholar
  40. Bortolomeazzi R, Verardo G, Liessi A, Calle A (2010) Formation of dehydrodiisoeugenol and dehydrodieugenol from the reaction of isoeugenol and eugenol with DPPH radical and their role in the radical scavenging activity. Food Chem 118:256–265CrossRefGoogle Scholar
  41. Box JD (1983) Investigation of the Folin-Ciocalteu phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525CrossRefGoogle Scholar
  42. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wissen Technol 28:25–30Google Scholar
  43. Bray HG, Thorpe WV (1954) Analysis of components of interest in metabolism. Meth Biochem Anal 1:27–52CrossRefGoogle Scholar
  44. Brigelius-Flohé R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155PubMedGoogle Scholar
  45. Budowski P, Menezes FGT, Dollear FG (1950) Sesame oil V. The stability of sesame oil. J Am Oil Chem Soc 27:377–380CrossRefGoogle Scholar
  46. Bull C, McClune GJ, Free JA (1983) The mechanism of Fe-EDTA catalyzed superoxide dismutation. J Am Chem Soc 105:5290–5300CrossRefGoogle Scholar
  47. Bursal E, Gülçin İ (2011) Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res Int 44:1482–1489CrossRefGoogle Scholar
  48. Burton GW, Ingold KU (1981) Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc 103:6472–6477CrossRefGoogle Scholar
  49. Büyükokuroğlu ME, Gülçin İ (2009) In vitro antioxidant and antiradical properties of Hippophae rhamnoides L. Phcog Mag 4:189–195Google Scholar
  50. Büyükokuroğlu ME, Gülçin İ, Oktay M, Kufrevioglu Öİ (2001) In vitro antioxidant properties of dantrolene sodium. Pharmacol Res 44:491–495PubMedCrossRefGoogle Scholar
  51. Cadenas E (1989) Biochemistry of oxygen toxicity. Ann Rev Biochem 58:79–110PubMedCrossRefGoogle Scholar
  52. Cai R, Hettiarachchy NS, Jalaluddin M (2003) High-performance liquid chromatography determination of phenolic constituents in 17 varieties of cowpeas. J Agric Food Chem 51:1623–1627PubMedCrossRefGoogle Scholar
  53. Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184PubMedCrossRefGoogle Scholar
  54. Calliste CA, Trouillas P, Allais DP, Simon A, Duroux JL (2001) Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants. J Agric Food Chem 49:3321–3327PubMedCrossRefGoogle Scholar
  55. Cano A, Hernández-Ruíz J, García-Cánovas F, Acosta M, Arnao MB (1998) An end-point method for estimation of the total antioxidant activity in plant material. Phytochem Anal 9:196–202CrossRefGoogle Scholar
  56. Cano A, Alcaraz O, Acosta M, Arnao MB (2002) On-line antioxidant activity determination: comparison of hydrophilic and lipophilic antioxidant activity using the ABTS·+ assay. Redox Rep 7:103–109PubMedCrossRefGoogle Scholar
  57. Cao GH, Prior RL (1998) Comparison of different analytical methods for assessing the total antioxidant capacity of human serum. Clin Chem 44:1309–1315PubMedGoogle Scholar
  58. Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biol Med 14:303–311CrossRefGoogle Scholar
  59. Cao G, Verdon CP, Wu AH, Wang H, Prior RL (1995) Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem 41:1738–1744PubMedGoogle Scholar
  60. Chai PC, Long LH, Halliwell B (2003) Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wines. Biochem Bioph Res Co 304:650–654CrossRefGoogle Scholar
  61. Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378CrossRefGoogle Scholar
  62. Chen ZY, Chan PT, Ho KY, Fung KP, Wang J (1996) Antioxidative activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids 79:157–163PubMedCrossRefGoogle Scholar
  63. Chen J, Lindmark-Mansson H, Gorton L, Akesson B (2003) Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int Dairy J 13:927–935CrossRefGoogle Scholar
  64. Chimi H, Cillard J, Cillard P, Rahmani M (1991) Peroxyl and hydroxyl radical scavenging activity of some natural phenolic antioxidants. J Am Oil Chem Soc 68:307–312CrossRefGoogle Scholar
  65. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST (2002) Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 50:2454–2458PubMedCrossRefGoogle Scholar
  66. Çoban TA, Beydemir Ş, Gülçin İ, Ekinci D (2007) Morphine inhibits erythrocyte carbonic anhydrase in vitro and in vivo. Biol Pharm Bull 30:2257–2261PubMedCrossRefGoogle Scholar
  67. Corbett JT (1989) The scopoletin assay for hydrogen peroxide. A review and a better method. J Biochem Biophys Methods 18:297–307PubMedCrossRefGoogle Scholar
  68. Costa D, Fernandes E, Santos JLM, Pinto DCGA, Silva AMS, Lima JLFC (2007) Noncellular fluorescence microplate screening assay for scavenging activity against singlet oxygen. Anal Bioanal Chem 387:2071–2081PubMedCrossRefGoogle Scholar
  69. Cuppett S, Schnepf M, Hall C (1997) Natural antioxidant-are they a reality? Natural antioxidants: chemistry, health effects, and applications. AOCS Press, ChampaignGoogle Scholar
  70. Cuvelier ME, Richard H, Berst C (1992) Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotech Biochem 56:324–325CrossRefGoogle Scholar
  71. Dargel R (1992) Lipid peroxidation-a common pathogenetic mechanism? Exp Toxicol Pathol 44:169–181PubMedCrossRefGoogle Scholar
  72. Das NP, Pereira TA (1990) Effects of flavonoids on thermal autoxidation of palm oil: structure-activity relationship. J Am Oil Chem Soc 67:255–258CrossRefGoogle Scholar
  73. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31PubMedGoogle Scholar
  74. Davies KJA (2000) Oxidative stress, antioxidant defenses, and damage removal, repair and replacement systems. IUBMB Life 50:279–289PubMedCrossRefGoogle Scholar
  75. Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3:17–25PubMedCrossRefGoogle Scholar
  76. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malonaldehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328PubMedCrossRefGoogle Scholar
  77. DeLange RJ, Glazer AN (1989) Phycoerythrin fluorescence-based assay for peroxy radicals: a screen for biologically relevant protective agents. Anal Biochem 177:300–306PubMedCrossRefGoogle Scholar
  78. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophy 274:532–538CrossRefGoogle Scholar
  79. Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Vina-Ribes J (1998) Functional food science and defence against reactive oxidative species. Brit J Nut 80:77–112CrossRefGoogle Scholar
  80. Dragsted LO, Strube M, Leth T (1997) Dietary levels of plant phenols and other non-nutritive components: could they prevent cancer? Eur J Cancer Prev 6:522–528PubMedCrossRefGoogle Scholar
  81. Duh PD (1998) Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free radical and active oxygen. JAm Oil Chem Soc 75:455–465CrossRefGoogle Scholar
  82. Dürken M, Agbenu J, Finckh B, Hubner C, Pichlmeier U, Zeller W, Winkler K, Zander A, Kohlschutter A (1995) Deteriorating free radical-trapping capacity and antioxidant status in plasma during bone marrow transplantation. Bone Marrow Transplant 15:757–762PubMedGoogle Scholar
  83. Dziedzic SZ, Hudson BJF (1984) Phenolic acids and related compounds as antioxidants for edible oils. Food Chem 14:45–51CrossRefGoogle Scholar
  84. Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature 405:903–904PubMedGoogle Scholar
  85. Ebermann R, Alth G, Kreitner M, Kubin AJ (1996) Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells. Photochem Photobiol B 36:95–97CrossRefGoogle Scholar
  86. Elmastas M, Gülçin İ, Işıldak Ö, Küfrevioğlu Öİ, İbaoğlu K, Aboul-Enein HY (2006a) Antioxidant capacity of bay (Laurus nobilis L.) leave extracts. J Iran Chem Soc 3:258–266Google Scholar
  87. Elmastas M, Türkekul İ, Öztürk L, Gülçin İ, Işıldak Ö, Aboul-Enein HY (2006b) The antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta). Comb Chem High T Scr 9:443–448Google Scholar
  88. Elmastaş M, Gülçin İ, Beydemir Ş, Küfrevioğlu Öİ, Aboul-Enein HY (2006) A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) seeds extracts. Anal Lett 39:47–65CrossRefGoogle Scholar
  89. Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad Biol Med 13:341–390PubMedCrossRefGoogle Scholar
  90. Etminan M, Gill SS, Samii A (2005) Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol 4:362–365PubMedCrossRefGoogle Scholar
  91. Farmer EE, Davoine C (2007) Reactive electrophile species. Curr Opin Plant Biol 10:380–386PubMedCrossRefGoogle Scholar
  92. Fenton HJH (1894) Oxidation of tartaric acid in the presence of iron. J Chem Soc Trans 65:899–910CrossRefGoogle Scholar
  93. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:240–247CrossRefGoogle Scholar
  94. Fiorucci SB, Golebiowski J, Cabrol-Bass D, Antonczak S (2007) DFT study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes. J Agric Food Chem 55:903–911PubMedCrossRefGoogle Scholar
  95. Fogliano V, Verde V, Randazzo G, Ritieni A (1999) Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem 47:1035–1040PubMedCrossRefGoogle Scholar
  96. Folin O (1927) Tyrosine and tryptophan determinations in proteins. J Biol Chem 73:649–672Google Scholar
  97. Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080PubMedCrossRefGoogle Scholar
  98. Foti M, Piattelli M, Baratta MT, Ruberto G (1996) Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J Agric Food Chem 44:497–501CrossRefGoogle Scholar
  99. Foti MC, Daquino C, Geraci C (2004a) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896CrossRefGoogle Scholar
  100. Foti MC, Daquino C, Geraci C (2004b) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH· radical in alcoholic solutions. J Org Chem 69:2309–2314PubMedCrossRefGoogle Scholar
  101. Frankel EN (1996) Antioxidants in lipid foods and their impact on food quality. Food Chem 57:51–55CrossRefGoogle Scholar
  102. Frankel EN (1998) Lipid oxidation, Dundee. The Oily PressGoogle Scholar
  103. Frankel EN, German JB (2006) Antioxidants in foods and health: problems and fallacies in the field. J Sci Food Agric 86:1999–2001CrossRefGoogle Scholar
  104. Fridovich I (1986) Superoxide dismutases. Adv Enzymol 58:61–97PubMedGoogle Scholar
  105. Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264:7761–7764PubMedGoogle Scholar
  106. Fu YL, Krasnovsky AA, Foote CS (1997) Quenching of singlet oxygen and sensitized delayed phthalocyanine fluorescence. J Phys Chem A 101:2552–2554CrossRefGoogle Scholar
  107. Ganesan K, Kumar KS, Rao PVS (2011) Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innov Food Sci Emerg 12:73–78CrossRefGoogle Scholar
  108. García-Parrilla MC (2008) Antioxidantes en la dieta mediterránea. Nutrición Clínica en Medicina 3:129–140Google Scholar
  109. Gardner PR, Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267:8757–8763PubMedGoogle Scholar
  110. Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A (1995) A fluorescence-based method for measuring total plasma antioxidant capability. Free Radical Biol Med 18:29–36CrossRefGoogle Scholar
  111. Gil MI (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589PubMedCrossRefGoogle Scholar
  112. Glazer AN (1990) Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol 186:161–168PubMedCrossRefGoogle Scholar
  113. Göçer H, Gülçin İ (2011) Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. Int J Food Sci Nut. doi: 10.3109/09637486.2011.585963
  114. Godbout JP, Berg BM, Kelley KW, Johnson RW (2004) α-Tocopherol reduces lipopolysaccharide-induced peroxide radical formation and interleukin-6 secretion in primary murine microglia and in brain. J Neuroimmunol 149:101–109PubMedCrossRefGoogle Scholar
  115. Goldstein S, Meyerstein D, Czapski G (1993) The Fenton reagents. Free Radical Biol Med 15:435–445CrossRefGoogle Scholar
  116. Grisham MB, Johnson GG, Lancaster JR (1996) Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol 268:237–246PubMedCrossRefGoogle Scholar
  117. Grosch W (1982) Lipid degradation products and flavour. In: Morton ID, Macleod AJ (eds) Food flavours part a, chapter 5Google Scholar
  118. Guillen-Sans R, Guzman-Chozas M (1998) The thiobarbituric acid (TBA) reaction in foods: a review. Crit Rev Food Sci Nut 38:315–330CrossRefGoogle Scholar
  119. Gülçin İ (2002) Determination of antioxidant activity, characterization of oxidative enzymes and investigation of some in vivo properties of nettle (Urtica dioica). Ph.D. Thesis, Atatürk University, p 12Google Scholar
  120. Gülçin İ (2005) The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nut 56:491–499CrossRefGoogle Scholar
  121. Gülçin İ (2006a) Antioxidant and antiradical activities of L-Carnitine. Life Sci 78:803–811PubMedCrossRefGoogle Scholar
  122. Gülçin İ (2006b) Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology 217:213–220PubMedCrossRefGoogle Scholar
  123. Gülçin İ (2007) Comparison of in vitro antioxidant and antiradical activities of l-tyrosine and L-Dopa. Amino Acids 32:431–438PubMedCrossRefGoogle Scholar
  124. Gülçin İ (2008) Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. J Enzyme Inhib Med Chem 23:871–876PubMedCrossRefGoogle Scholar
  125. Gülçin İ (2009) Antioxidant activity of L-Adrenaline: an activity-structure insight. Chem Biol Interact 179:71–80PubMedCrossRefGoogle Scholar
  126. Gülçin İ (2010) Antioxidant properties of resveratrol: a structure-activity insight. Innov Food Sci Emerg 11:210–218CrossRefGoogle Scholar
  127. Gülçin İ, Daştan A (2007) Synthesis of dimeric phenol derivatives and determination of in vitro antioxidant and radical scavenging activities. J Enzyme Inhib Med Chem 22:685–695CrossRefGoogle Scholar
  128. Gülçin İ, Büyükokuroğlu ME, Oktay M, Küfrevioğlu Öİ (2002a) On the in vitro antioxidant properties of melatonin. J Pineal Res 33:167–171PubMedCrossRefGoogle Scholar
  129. Gülçin İ, Oktay M, Küfrevioğlu Öİ, Aslan A (2002b) Determinations of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329PubMedCrossRefGoogle Scholar
  130. Gülçin İ, Büyükokuroğlu ME, Küfrevioğlu Öİ (2003a) Metal chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res 34:278–281PubMedCrossRefGoogle Scholar
  131. Gülçin İ, Büyükokuroğlu ME, Oktay M, Küfrevioğlu Öİ (2003b) Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. Subsp. pallsiana (Lamb.) Holmboe. J Ethnopharmacol 86:51–58PubMedCrossRefGoogle Scholar
  132. Gülçin İ, Oktay M, Kireçci E, Küfrevioğlu Öİ (2003c) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382CrossRefGoogle Scholar
  133. Gülçin İ, Beydemir Ş, Alici HA, Elmastaş M, Büyükokuroğlu ME (2004a) In vitro antioxidant properties of morphine. Pharmacol Res 49:59–66PubMedCrossRefGoogle Scholar
  134. Gülçin İ, Küfrevioğlu Öİ, Oktay M, Büyükokuroğlu ME (2004b) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215PubMedCrossRefGoogle Scholar
  135. Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2004c) Antioxidant activity of saponins isolated from ivy: a-Hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside F. Planta Med 70:561–563PubMedCrossRefGoogle Scholar
  136. Gülçin İ, Şat İG, Beydemir Ş, Elmastaş M, Küfrevioğlu Öİ (2004d) Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem 87:393–400CrossRefGoogle Scholar
  137. Gülçin İ, Şat İG, Beydemir Ş, Küfrevioğlu Öİ (2004e) Evaluation of the in vitro antioxidant properties of extracts of broccoli (Brassica oleracea L.). Ital J Food Sci 16:17–30Google Scholar
  138. Gülçin İ, Berashvili D, Gepdiremen A (2005a) Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne. J Ethnopharmacol 101:287–293PubMedCrossRefGoogle Scholar
  139. Gülçin İ, Beydemir Ş, Hisar O (2005b) The effect of α-tocopherol on the antioxidant enzymes activities and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Acta Vet Hung 53:425–433PubMedCrossRefGoogle Scholar
  140. Gülçin İ, Beydemir Ş, Şat İG, Küfrevioğlu Öİ (2005c) Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment Hung 34:193–202CrossRefGoogle Scholar
  141. Gülçin İ, Elias R, Gepdiremen A, Boyer L (2006a) Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur Food Res Technol 223:759–767CrossRefGoogle Scholar
  142. Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2006b) Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-D-glucopyranosyl)-hederagenin. Phytother Res 20:130–134PubMedCrossRefGoogle Scholar
  143. Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2006c) Screening of antioxidant and antiradical activity of monodesmosides and crude extract from Leontice smirnowii Tuber. Phytomedicine 13:343–351PubMedCrossRefGoogle Scholar
  144. Gülçin İ, Elias R, Gepdiremen A, Boyer L, Köksal E (2007a) A comparative study on the antioxidant activity of fringe tree (Chionanthus virginicus L.) extracts. Afr J Biotechnol 6:410–418Google Scholar
  145. Gülçin İ, Elmastas M, Aboul-Enein HY (2007b) Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum) assayed by different methodologies. Phytother Res 21:354–361PubMedCrossRefGoogle Scholar
  146. Gülçin İ, Oktay M, Köksal E, Şerbetçi H, Beydemir Ş, Küfrevioglu ÖI (2008a) Antioxidant and radical scavenging activities of uric acid. Asian J Chem 20:2079–2090Google Scholar
  147. Gülçin İ, Tel AZ, Kirecci E (2008b) Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int J Food Propert 11:450–471CrossRefGoogle Scholar
  148. Gülçin İ, Elias R, Gepdiremen A, Taoubi K, Köksal E (2009) Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sci Technol 43:195–212CrossRefGoogle Scholar
  149. Gülçin İ, Bursal E, Şehitoğlu HM, Bilsel M, Gören AC (2010a) Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol 48:2227–2238PubMedCrossRefGoogle Scholar
  150. Gülçin İ, Elias R, Gepdiremen A, Chea A, Topal F (2010b) Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: Cepharanthine and fangchinoline. J Enzyme Inhib Med Chem 25:44–53PubMedCrossRefGoogle Scholar
  151. Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY (2010c) Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 3:43–53CrossRefGoogle Scholar
  152. Gülçin İ, Topal F, Çakmakçı R, Gören AC, Bilsel M, Erdoğan U (2011a) Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci 76:C585–C593CrossRefGoogle Scholar
  153. Gülçin İ, Topal F, Oztürk Sarıkaya SB, Bursal E, Gören AC, Bilsel M (2011b) Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Rec Nat Prod 5:158–175Google Scholar
  154. Gülçin İ, Gagua N, Beydemir S, Bayram R, Bakuridze A, Gepdiremen A (2011c) Apoptotic, antioxidant, antiradical and antiglaucoma effects of majdine and isomajdine from Vinca herbacea Waldst. and Kit. J Enzyme Inhib Med Chem. doi: 10.3109/14756366.2011.604318
  155. Gülçin İ, Elmastaş M, Aboul-Enein HY (2011d) Antioxidant activity of clove oil-a powerful antioxidant source. Arab J Chem. doi: 10.1016/j.arabjc.2010.09.016
  156. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc Roy Soc Lond Series A 147:332–351CrossRefGoogle Scholar
  157. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Reichel TL (1998) High molecular weight plant phenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892CrossRefGoogle Scholar
  158. Halliwell B (1990) How to characterize a biological antioxidant. Free Rad Res Commun 9:1–32CrossRefGoogle Scholar
  159. Halliwell B (1995) Antioxidant characterization; methodology and mechanism. Biochem Pharmacol 49:1341–1348PubMedCrossRefGoogle Scholar
  160. Halliwell B (1996) Oxidative stress, nutrition and health. Free Radical Res 25:57–74CrossRefGoogle Scholar
  161. Halliwell B (1997) Antioxidants in human health and disease. Ann Rev Nut 16:33–50CrossRefGoogle Scholar
  162. Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31:509–515PubMedCrossRefGoogle Scholar
  163. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nut 57:715–725Google Scholar
  164. Halliwell B, Gutteridge JMC (1984) Oxygen toxicology, oxygen radicals, transition metals and disease. Biochem J 219:1–4PubMedGoogle Scholar
  165. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  166. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85PubMedCrossRefGoogle Scholar
  167. Halliwell B, Murcia MA, Chirico S, Aruoma OI (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 35:7–20PubMedCrossRefGoogle Scholar
  168. Halliwell B, Clement MV, Long LH (2000) Hydrogen peroxide in human body. FEBS Lett 486:10–13PubMedCrossRefGoogle Scholar
  169. Harborne JB (1986) In: Cody V, Middleton E, Harborne JB, Alan R (eds) Plant flavonoids in biology and medicine. Liss, New York, pp 15–24Google Scholar
  170. Harborne JB, Baxter H, Moss GP (1999) Phytochemical dictionary: handbook of bioactive compounds from plants, 2nd edn. Taylor and Francis, LondonGoogle Scholar
  171. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203PubMedCrossRefGoogle Scholar
  172. Herrmann K (1976) Flavonoids and flavones in food plants: a review. J Food Technol 11:433–448CrossRefGoogle Scholar
  173. Herrmann K (1993) In pflanzlichen lebensmitteln vorkommende flavonoide als antioxidantien. Gordian 93:108–111Google Scholar
  174. Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the zupthen elderly study. Lancet 342:1007–1014PubMedCrossRefGoogle Scholar
  175. Hevel JM, Marletta MA (1994) Nitric-oxide synthase assays. Methods Enzymol 233:250–253PubMedCrossRefGoogle Scholar
  176. Hippeli S, Elstner EF (1999) Transition metal ion-catalyzed oxygen activation during pathogenic processes. FEBS Lett 443:1–7PubMedCrossRefGoogle Scholar
  177. Hochstein P, Atallah AS (1988) The nature of oxidants and antioxidant systems in the inhibition of mutation and cancer. Mutat Res 202:363–375PubMedGoogle Scholar
  178. Hou YC, Janczuk A, Wang PG (1999) Current trends in the development of nitric oxide donors. Curr Pharm Des 5:417–441PubMedGoogle Scholar
  179. Hu C, Ding Y (1996) Antioxidant effect of flavonoids in different oxidation systems. Food Fermentation Industries 22:46–53Google Scholar
  180. Hu JP, Calomme M, Lasure A, De Bruyne T, Peters L, Vlietinck A, Van den Berghe DA (1995) Structure–activity relationship of flavonoids with superoxide scavenging activity. Biol Trace Element Res 47:327–331CrossRefGoogle Scholar
  181. Huang DJ, Ou BX, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002a) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated â-cyclodextrin as the solubility enhancer. J Agric Food Chem 50:1815–1821PubMedCrossRefGoogle Scholar
  182. Huang DJ, Ou BX, Hampsch-Woodill M, Flanagan JA, Prior RL (2002b) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444PubMedCrossRefGoogle Scholar
  183. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedCrossRefGoogle Scholar
  184. Hudson JF (1990) Food antioxidants. Elsevier Applied Science, LondonCrossRefGoogle Scholar
  185. Husain SR, Cillard J, Cillard P (1987) Hydroxyl radical-scavenging activity of flavonoids. Phytochemistry 26:2489–2491CrossRefGoogle Scholar
  186. Inatani R, Nakatani N, Fuwa H (1983) Antioxidative effect of the constituents of rosemary (Rosemarinus officinalis L.) and their derivatives. Agric Biol Chem 47:521–528CrossRefGoogle Scholar
  187. Innocenti A, Gülçin İ, Scozzafava A, Supuran CT (2010a) Carbonic anhydrase inhibitors. Antioxidant polyphenol natural products effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 20:5050–5053PubMedCrossRefGoogle Scholar
  188. Innocenti A, Öztürk Sarıkaya SB, Gülçin İ, Supuran CT (2010b) Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of natural product polyphenols and phenolic acids. Bioorg Med Chem 18:2159–2164PubMedCrossRefGoogle Scholar
  189. Jayasinghe C, Gotoh N, Aoki T, Wada S (2003) Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J Agric Food Chem 51:4442–4449PubMedCrossRefGoogle Scholar
  190. Jiang Q, Christen S, Shigenaga MK, Ames BN (2001) Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nut 74:714–722Google Scholar
  191. Johnson EJ, Hammond BR, Yeum KJ, Qin J, Wang XD, Castaneda C, Snodderly DM, Russell RM (2000) Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am J Clin Nutr 71:1555–1562PubMedGoogle Scholar
  192. Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 116:4846–4851CrossRefGoogle Scholar
  193. Jovanovic SV, Steenken S, Boone CW, Simic MG (1999) H-atom transfer is a preferred antioxidant mechanism of curcumin. J Am Chem Soc 121:9677–9681CrossRefGoogle Scholar
  194. Kadoma Y, Ishihara M, Fujisawa S (2006) A quantitative approach to the free radical interaction between alpha-tocopherol and the coantioxidants eugenol, resveratrol or ascorbate. In Vivo 20:61–67PubMedGoogle Scholar
  195. Karaman Ş, Tütem E, Başkan KS, Apak R (2009) Comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay. Food Chem 120:1201–1209CrossRefGoogle Scholar
  196. Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51:68–75PubMedCrossRefGoogle Scholar
  197. Kaviarasan S, Naik GH, Gangabhagirathi R, Anuradha CV, Priyadarsini KI (2007) In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem 103:31–37CrossRefGoogle Scholar
  198. Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T (2002) Oxidative dimers produced from protocatechuic and gallic esters in the DPPH radical scavenging reaction. J Sci Food Agric 50:5468–5471CrossRefGoogle Scholar
  199. Kazazica SP, Butkovica V, Srazica D, Klasinc L (2006) Gas-phase ligation of Fe+ and Cu+ ions with some flavonoids. J Agric Food Chem 54:8391–8396CrossRefGoogle Scholar
  200. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50PubMedCrossRefGoogle Scholar
  201. King DW, Lin J, Kester DR (1991) Spectrophotometric determination of iron (II) in seawater at nanomolar concentrations. Anal Chim Acta 247:125–132CrossRefGoogle Scholar
  202. Klein E, Lukes V, Ilcin M (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chem Phys 336:51–57CrossRefGoogle Scholar
  203. Kohri S, Fujii H, Oowada S, Endoh N, Sueishi Y, Kusakabe M, Shimmei M, Kotake Y (2009) An oxygen radical absorbance capacity-like assay that directly quantifies the antioxidant’s scavenging capacity against AAPH-derived free radicals. Anal Biochem 386:167–171PubMedCrossRefGoogle Scholar
  204. Köksal E, Gülçin İ (2008) Antioxidant activity of cauliflower (Brassica oleracea L.). Turk J Agric For 32:65–78Google Scholar
  205. Köksal E, Gülçin İ, Sarıkaya Ö, Beyza S, Bursal E (2009) On the in vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem 24:395–405PubMedCrossRefGoogle Scholar
  206. Krishnadev N, Meleth AD, Chew EY (2010) Nutritional supplements for age-related macular degeneration. Curr Opin Ophthalmol 21:184–189PubMedCrossRefGoogle Scholar
  207. Krol W, Czuba ZP, Threadgill MD, Cunningham BDM, Pietsz G (1995) Inhibition of nitric oxide (NO.) production in murine macrophages by flavones. Biochem Pharmacol 50:1031–1035PubMedCrossRefGoogle Scholar
  208. Kroon PA, Williamson G (1999) Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agric 79:355–361CrossRefGoogle Scholar
  209. Lampi AM, Piironen V (1998) α and γ-Tocopherols as efficient antioxidants in butter oil triacylglycerols. Fett/Lipid 100:292–295CrossRefGoogle Scholar
  210. Lavelli V, Hippeli S, Peri C, Elstner EF (1999) Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. J Agric Food Chem 47:3826–3831PubMedCrossRefGoogle Scholar
  211. Lee G, Rossi MR, Coichev N, Moya HD (2011) The reduction of Cu(II)/neocuproine complexes by some polyphenols: total polyphenols determination in wine samples. Food Chem 126:679–686CrossRefGoogle Scholar
  212. Leinonen J, Rantalaiho V, Lehtimaki T, Koivula T, Wirta O, Pasternack A, Alho H (1998) The association between the total antioxidant potential of plasma and the presence of coronary heart disease and renal dysfunction in patients with NIDDM. Free Radical Res 29:273–281CrossRefGoogle Scholar
  213. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffer AEMF, Rietjens IMCM (2001) The influence of pH on the antioxidant properties and the mechanisms of antioxidant action of hydroxyflavones. Free Radical Biol Med 31:869–881CrossRefGoogle Scholar
  214. Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, Park JB, Lazarev A, Graumlich JF, King J, Cantilena LR (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. P Natl Acad Sci USA 93:3704–3709CrossRefGoogle Scholar
  215. Lichtenstein AH (2009) Nutrient supplements and cardiovascular disease: a heartbreaking story. J Lipid Res 50:S429–S433PubMedCrossRefGoogle Scholar
  216. Liochev SI, Fridovich I (1995) Superoxide from glucose oxidase or from nitroblue tetrazolium. Arch Biochem Biophys 318:408–410PubMedCrossRefGoogle Scholar
  217. Litwinienko G, Ingold KU (2003) Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2, 2-diphenyl-l-picrylhydrazyl (DPPH) in alcohols. J Org Chem 68:3433–3438PubMedCrossRefGoogle Scholar
  218. Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896PubMedCrossRefGoogle Scholar
  219. Lorenzo Y, Azqueta A, Luna L, Bonilla F, Dominguez G, Collins AR (2008) The carotenoid β-cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells. Carcinogenesis 30:308–314PubMedCrossRefGoogle Scholar
  220. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  221. MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86:2046–2056CrossRefGoogle Scholar
  222. Macheix JJ, Fleurit A, Billot J (1990) Fruit phenolics. CRC Press, Boca RatonGoogle Scholar
  223. Magalhaes LM, Segundo MA, Reis S, Lima JLFC, Rangel AOSS (2006) Automatic method for the determination of Folin-Ciocalteu reducing capacity in food products. J Agric Food Chem 54:5241–5246PubMedCrossRefGoogle Scholar
  224. Magalhaes LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19PubMedCrossRefGoogle Scholar
  225. Magalhães LM, Santos M, Segundo MA, Reis S, Lima JLFC (2009) Flow injection based methods for fast screening of antioxidant capacity. Talanta 77:1559–1566PubMedCrossRefGoogle Scholar
  226. Maiani G, Caston MJ, Catasta G, Toti E, Cambrodon IG, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Böhm V, Mayer-Miebach E, Behsnilian D, Schlemmer U (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nut Food Res 53:S194–S218CrossRefGoogle Scholar
  227. Mangels AR, Block G, Frey CM, Patterson BH, Taylor PR, Norkus EP, Levander OA (1993) T he bioavailability to humans of ascorbic acid from oranges, orange juice and cooked broccoli is similar to that of synthetic ascorbic acid. J Nut 123:1054–1061Google Scholar
  228. Maranz S, Wiesman Z, Garti N (2003) Phenolic constituents of shea (Vitellaria paradoxa) kernels. J Agric Food Chem 51:6268–6273PubMedCrossRefGoogle Scholar
  229. Marinova EM, Yanishlieva NV (1994) Effect of lipid unsaturation on the antioxidative activity of some phenolic acids. J Amer Oil Chem Soc 71:427–434CrossRefGoogle Scholar
  230. Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424:83–95PubMedGoogle Scholar
  231. Mastelic J, Jerkovic I, Blaževic I, Poljak-Blaži M, Borovic S, Ivancic-Bace I, Smrecki V, Žarkovic N, Brcic-Kostic K, Vikiç-Topic D, Müller N (2008) Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J Agric Food Chem 56:3989–3996PubMedCrossRefGoogle Scholar
  232. Matsuo M, Kaneko T (1999) Lipid peroxidation. In: Yu BP (ed) Methods in aging research, chapter 25. CRC Press, Boca Raton, pp 571–606Google Scholar
  233. Merz JH, Waters WA (1947) The mechanism of oxidation of alcohols by Fenton’s reagent. Discuss Faraday Soc 2:179–188CrossRefGoogle Scholar
  234. Middleton EJR, Kandaswami C (1993) In the flavonoids advances in research since 1986. In: Harborne JB (ed) Chapman & Hall/CRC, New YorkGoogle Scholar
  235. Miguel MG (2010) Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr J 25:291–312CrossRefGoogle Scholar
  236. Milardovic S, Ivekovic D, Ruwenjak V, Grabaric BS (2005) Use of DPPH/DPPH redox couple for biamperometric determination of antioxidant activity. Electroanalysis 17:1847–1853CrossRefGoogle Scholar
  237. Milardovic S, Ivekovic D, Grabaric BS (2006) A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68:175–180PubMedCrossRefGoogle Scholar
  238. Miller NJ, Rice-Evans CA, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412PubMedGoogle Scholar
  239. Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242PubMedCrossRefGoogle Scholar
  240. Mingfu W, Simon JE, Aviles IF, He K, Zheng Q, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51:601–608CrossRefGoogle Scholar
  241. Montedoro G, Cantarelli C (1969) Indagini sulle sostanze fenoliche presenti negli oli d’oliva. Riv Ital Sost Grasse 46:115–124Google Scholar
  242. Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671PubMedCrossRefGoogle Scholar
  243. Mora A, Paya M, Rios JL, Alcaraz MJ (1990) Structure-activity relationship of polymethoxyflavonoids and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem Pharmacol 40:393–397CrossRefGoogle Scholar
  244. Mortensen A, Skibsted LH (1997) Importance of carotenoid structure in radical scavenging reactions. J Agric Food Chem 45:2970–2977CrossRefGoogle Scholar
  245. Mulholland CW, Strain JJ (1991) Serum total free radical trapping ability in acute myocardial infarction. Clin Bichem 24:437–441CrossRefGoogle Scholar
  246. Musialik M, Litwinienko G (2005) Scavenging of dpph* radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org Lett 7:4951–4954PubMedCrossRefGoogle Scholar
  247. Musialik M, Kuzmicz R, Pawłowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74:2699–2709PubMedCrossRefGoogle Scholar
  248. Nagata N, Momose K, Ishida Y (1999) Inhibitory effects of catecholamines and anti-oxidants on the fluorescence Reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J Biochem 125:658–661PubMedGoogle Scholar
  249. Naguib YMA (1998) A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal Biochem 265:290–298PubMedCrossRefGoogle Scholar
  250. Nair V, O’Neil CL, Wang PG (2008) Malondialdehyde. Encyclopedia of reagents for organic synthesis. Wiley, New YorkGoogle Scholar
  251. Nakamura Y, Tsuji S, Tonogai Y (2003) Method for analysis of tannic acid and its metabolites in biological samples: application to tannic acid metabolism in the rat. J Agric Food Chem 51:331–339PubMedCrossRefGoogle Scholar
  252. Neff WE, Frankel EN, Weisleder D (1981) High-pressure liquid chromatography of autoxidised lipids: II. Hydroperoxy-cyclic peroxides and other secondary products from methyl linolenate. Lipids 16:439–448CrossRefGoogle Scholar
  253. Nenadis N, Boyle S, Bakalbassis EG, Tsimidou M (2003) An experimental approach to structure-activity relationships of caffeic and dihydrocaffeic acids and related monophenols. JAOCS 80:451–458CrossRefGoogle Scholar
  254. Niki E (1990) Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol 186:100–108PubMedCrossRefGoogle Scholar
  255. Niki E, Tsuchiya J, Tanimura R, Kamiya Y (1982) Regeneration of vitamin E from a-chromanoxyl radical by glutathione and vitamin C. Chem Lett 27:789–792CrossRefGoogle Scholar
  256. Niki E, Kawakami A, Yamamoto Y, Kamiya Y (1985) Oxidation of lipids: VIII. Synergistic inhibition of oxidation of phosphatidylcholine liposome in aqueous dispersion by vitamin E and vitamin C. Bull Chem Soc Jap 58:1971–1975CrossRefGoogle Scholar
  257. Nishibayashi S, Asanuma M, Kohno R, GomezVargas M, Ogawa N (1996) Scavenging effects of dopamine agonists on nitric oxide radicals. J Neurochem 67:2208–2211PubMedCrossRefGoogle Scholar
  258. Oktay M, Gülçin İ, Küfrevioğlu Öİ (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensm WissenTechnol 36:263–271Google Scholar
  259. Omura K (1995) Antioxidant synergism between butylated hydroxyanisole and butylated hydroxytoluene. J Amer Oil Chem Soc 72:1565–1570CrossRefGoogle Scholar
  260. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626PubMedCrossRefGoogle Scholar
  261. Ou B, Hampsch-Woodill M, Flanagan J, Deemer EK, Prior RL, Huang D (2002a) Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J Agric Food Chem 50:2772–2777PubMedCrossRefGoogle Scholar
  262. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002b) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128PubMedCrossRefGoogle Scholar
  263. Ou B, Prior RL, Huang D (2005) The chemistry behind dietary antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedCrossRefGoogle Scholar
  264. Özcelik B, Lee JH, Min DB (2003) Effects of light, oxygen and pH on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method to evaluate antioxidants. J Food Sci 68:487–490CrossRefGoogle Scholar
  265. Öztürk Sarıkaya SB, Gülçin İ, Supuran CT (2010) Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem Biol Drug Design 75:515–520CrossRefGoogle Scholar
  266. Öztürk Sarıkaya SB, Topal F, Şentürk M, Gülçin İ, Supuran CT (2011) In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg Med Chem Lett 21:4259–4262PubMedCrossRefGoogle Scholar
  267. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedCrossRefGoogle Scholar
  268. Packer L (1996) Nitric oxide. Part A: sources and detection of NO; NO synthase. Method Enzymol 268:331–340Google Scholar
  269. Paganga G, Miller N, Rice-Evans CA (1999) The polyphenolic content of fruits and vegetables and their antioxidant activities. What does a serving constitute? Free Radical Res 30:153–162CrossRefGoogle Scholar
  270. Palozza P, Krinsky NI (1992) Antioxidant effects of carotenoids in vivo and in vitro: an overview. Method Enzymol 268:127–136Google Scholar
  271. Papadopoulos G, Boskou D (1991) Antioxidant effect of natural phenols on olive oil. J Am Oil Chem Soc 68:669–671CrossRefGoogle Scholar
  272. Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Flerlage N, Burillo J, Codina C (2002) Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled Mediterranean herbs and aromatic plants. J Agric Food Chem 50:6882–6890PubMedCrossRefGoogle Scholar
  273. Pekkarinen SS, Heinonen IM, Hopia AI (1999a) Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. J Sci Food Agric 79:499–506CrossRefGoogle Scholar
  274. Pekkarinen SS, Stöckmann H, Schwarz K, Heinonen IM, Hopia AI (1999b) Antioxidant activity and participation of phenolic acids in bulk and emulsified methyl linoleate. J Agric Food Chem 47:3036–3043PubMedCrossRefGoogle Scholar
  275. Pellegrini N, Serafini M, Colombi B, Del Río D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages, and oils consumed in Italy assessed by three different in vitro assays. J Nut 133:2812–2819Google Scholar
  276. Perez C, Sanchez J, Marmol F, Puig-Parellada P, Pouplana R (2007) Reactivity of biologically important NSAID compounds with superoxide (O2 .−), nitric oxide (.NO) and cyclooxygenase inhibition. QSAR Comb Sci 26:368–377CrossRefGoogle Scholar
  277. Pérez-Jiménez J, Saura-Calixto F (2005) Literature data may underestimate the actual antioxidant capacity of cereals. J Agric Food Chem 53:5036–5040PubMedCrossRefGoogle Scholar
  278. Peterson GL (1979) Review of the folin phenol protein quantitation method of Lowery et al. Anal Biochem 18:201–220CrossRefGoogle Scholar
  279. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042PubMedCrossRefGoogle Scholar
  280. Pokorny J (1987) Major factors affecting the autoxidation of lipids’. In: Chan HWS (ed) Autoxidation of unsaturated lipids. Academic Press, London, pp 141–206Google Scholar
  281. Pokorny J (1988) Autoxidation of unsaturated lipids. In: Chan H (ed) Academic Press, London, p 141Google Scholar
  282. Pokorny J (1999) Antioxidants in food preservation’. In: Shafiur Rahman M (ed) Handbook of food preservation. Marcel Dekker, New York, pp 309–337Google Scholar
  283. Pokorny J, Yanishlieva N, Gordon M (2000) Antioxidants in food. Practical applications. Published in North and South America by CRC Press LLC, Corporate Blvd, NW Boca Raton FL 33431, USAGoogle Scholar
  284. Ponka P (1999) Cellular iron metabolism. Kidney Int 55:S2–S11CrossRefGoogle Scholar
  285. Pratt DE (1976) Role of flavones and related compounds in retarding lipidoxidative flavor changes in foods. ACS Symp Ser 26:1–13CrossRefGoogle Scholar
  286. Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radical Biol Med 27:1173–1181CrossRefGoogle Scholar
  287. Prior RL, Wu XL, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302PubMedCrossRefGoogle Scholar
  288. Proteggente AR, Pannala AS, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C, Rice-Evans CA (2002) The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res 36:217–233CrossRefGoogle Scholar
  289. Pryor WA, Stanley JP (1975) Letter: A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40:3615–3617PubMedCrossRefGoogle Scholar
  290. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402PubMedCrossRefGoogle Scholar
  291. Pulido R, Hernandez-Garcia M, Saura-Calixto F (2003) Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet. Eur J Clin Nutr 57:1275–1282PubMedCrossRefGoogle Scholar
  292. Quick KL, Hardt JI, Dugan LL (2000) Rapid microplate assay for superoxide scavenging efficiency. J Neurosci Methods 97:138–144CrossRefGoogle Scholar
  293. Ramanathan L, Das NP (1993) Effect of natural copper chelating components on the pro-oxidant activity of ascorbic acid in steam-cooked ground fish. Int J Food Sci Technol 28:279–288Google Scholar
  294. Ratty AK, Das NP (1988) Effect of flavonoids on nonenzymatic lipid peroxidation: structure–activity relationship. Biochem Med Metab Biol 39:69–79PubMedCrossRefGoogle Scholar
  295. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26:1231–1237CrossRefGoogle Scholar
  296. Reaven PD, Witztum JL (1996) Oxidized low density lipoproteins in atherogenesis: role of dietary modification. Ann Rev Nut 16:51–71CrossRefGoogle Scholar
  297. Regoli F, Winston GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156:96–105PubMedCrossRefGoogle Scholar
  298. Riccioni G (2009) Carotenoids and cardiovascular disease. Curr Atheroscler Rep 11:434–439PubMedCrossRefGoogle Scholar
  299. Rice-Evans C, Miller NJ (1994) Total antioxidant status in plasma and body fluids. Method Enzymol 234:279–293CrossRefGoogle Scholar
  300. Rice-Evans CA, Miller NJ (1996) Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc T 24:790–795Google Scholar
  301. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med 20:933–956CrossRefGoogle Scholar
  302. Rimbach G, Pallauf J (1998) Phytic acid inhibits free radical formation in vitro but does not affect liver oxidant or antioxidant status in growing rats. J Nutr 128:1950–1955PubMedGoogle Scholar
  303. Rimm EB, Ascherio A, Giovannucci E, Spiegalman D, Stampfer M, Willett W (1996a) Vegetable, fruits, and cereal fiber intake and risk of coronary heart disease among men. JAMAJ-Am Med Assoc 275:447–451CrossRefGoogle Scholar
  304. Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett W (1996b) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125:384–389PubMedGoogle Scholar
  305. Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841PubMedCrossRefGoogle Scholar
  306. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887PubMedCrossRefGoogle Scholar
  307. Rock CL, Jacob RA, Bowen PE (1996) Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc 96:693–702PubMedCrossRefGoogle Scholar
  308. Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J (2008) Updated Brazilian database on food carotenoids: factors affecting carotenoid composition. J Food Comp Anal 21:445–463CrossRefGoogle Scholar
  309. Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92:235–254CrossRefGoogle Scholar
  310. Roginsky VA, Barsukova TK, Remosova AA, Bors W (1996) Moderate antioxidative efficiency of flavonoids during peroxidation of methyl linoleate in homogenous and micellar solutions. J Am Oil Chem Soc 73:777–786CrossRefGoogle Scholar
  311. Ross KA, Beta TS, Arntfield D (2009) A comparative study on the phenolic acids identified and quantified in dry beans using HPLC as affected by different extraction and hydrolysis methods. Food Chem 113:336–344CrossRefGoogle Scholar
  312. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008PubMedCrossRefGoogle Scholar
  313. Samadi A, Soriano E, Revuelta J, Valderas C, Chioua M, Garrido I, Bartolomé B, Tomassolli I, Ismaili L, González-Lafuente L, Villarroya M, García AG, Oset-Gasque MJ, Marco-Contelles J (2011) Synthesis, structure, theoretical and experimental in vitro antioxidant/pharmacological properties of a-aryl, N-alkyl nitrones, as potential agents for the treatment of cerebral ischemia. Bioorg Med Chem 19:951–960PubMedCrossRefGoogle Scholar
  314. Sanchez-Mareno C (2002) Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Intern 8:121–137Google Scholar
  315. Santocono M, Zurria M, Berrettini M, Fedeli D, Falcioni G (2006) Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J Photochem Photobiol B-Biol 85:205–215CrossRefGoogle Scholar
  316. Sartor V, Henderson PT, Schuster GB (1999) Radical cation transport and reaction in RNA/DNA hybrid duplexes: effect of global structure on reactivity. J Am Chem Soc 121:11027–11033CrossRefGoogle Scholar
  317. Satue-Gracia M, Heinonen M, Frankel EN (1997) Antocyanins as antioxidants on human low-density lipoproteins and lecithin-liposome systems. J Agric Food Chem 45:3362–3367CrossRefGoogle Scholar
  318. Schleisier K, Harwat M, Bohm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radical Res 36:177–187CrossRefGoogle Scholar
  319. Schreck R, Baeuerle PA (1994) Assessing oxygen radicals as mediators in activation of inducible eukaryotic transcription factor NF-KB. Method Enzymol 234:151–163CrossRefGoogle Scholar
  320. Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FEBS Lett 10:709–720Google Scholar
  321. Şentürk M, Gülçin İ, Beydemir Ş, Küfrevioğlu Öİ, Supuran CT (2011) In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem Biol Drug Des 77:494–499PubMedCrossRefGoogle Scholar
  322. Şerbetçi Tohma H, Gülçin İ (2010) Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int J Food Propert 13:657–671CrossRefGoogle Scholar
  323. Shahidi F, Janitha PK, Wanasundara PD (1992) Phenolic antioxidants. Crit Rev Food Sci Nut 32:67–103CrossRefGoogle Scholar
  324. Sherwin ER (1972) Antioxidants for food fats and oils. J Am Oil Chem Soc 49:468–472CrossRefGoogle Scholar
  325. Sherwin ER (1990) In: Branen AL, Davidson PM, Salminen S (eds) Food additives, Marvel Dekker Inc., New York, pp 139–193Google Scholar
  326. Siah CW, Trinder D, Olynyk JK (2005) Iron overload. Clin Chim Acta 358:24–36PubMedCrossRefGoogle Scholar
  327. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–39CrossRefGoogle Scholar
  328. Sies H (1993) Strategies of antioxidant defence. Eur J Biochem 215:213–219PubMedCrossRefGoogle Scholar
  329. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295PubMedGoogle Scholar
  330. Sies H, Stahl W (1995) Vitamins E and C, β-carotene, and other carotenoids as antioxidants. Am J Clin Nut 62:1315–1321Google Scholar
  331. Simic MG (1981) Free radical mechanism of autoxidation process. J Chem Educ 58:125–131CrossRefGoogle Scholar
  332. Simic MG, Jovanovic SV (1994) Inactivation of oxygen radicals by dietary phenolic compounds in anticarcinogenesis. In: Ho CT, Osawa T, Huang MT, Rosen RT (eds) Food phytochemicals for cancer prevention. American Chemical Society, Washington, DCGoogle Scholar
  333. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  334. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  335. Soares JR, Dins TCP, Cunha AP, Ameida LM (1997) Antioxidant activity of some extracts of Thymus zygis. Free Radical Res 26:469–478CrossRefGoogle Scholar
  336. Somogyi A, Rosta K, Pusztai P, Tulassay Z, Nagy G (2007) Antioxidant measurements. Physiol Meas 28:R41–R55PubMedCrossRefGoogle Scholar
  337. Song FL, Gan RY, Zhang Y, Xiao Q, Kuang L, Li HB (2010) Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int J Mol Sci 11:2362–2372PubMedCrossRefGoogle Scholar
  338. Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758PubMedCrossRefGoogle Scholar
  339. St Angelo AJ (1996) Lipid oxidation in foods. Crit Rev Food Sci Nutr 36:175–224PubMedCrossRefGoogle Scholar
  340. Stahl W, Sies H (1993) Physical quenching of singlet-oxygen and cis-trans isomerization of carotenoids. Ann NY Acad Sci 691:10–19PubMedCrossRefGoogle Scholar
  341. Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351CrossRefGoogle Scholar
  342. Stasko A, Brezova V, Biskupic S, Misik V (2007) The potential pitfalls of using 1, 1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixed water solvents. Free Radical Res 41:379–390CrossRefGoogle Scholar
  343. Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman and Company, p 732Google Scholar
  344. Susan D, Arnum V (1998) Vitamin A in Kirk-Othmer encyclopedia of chemical technology. Wiley, New York, pp 99–107Google Scholar
  345. Takahama U (1984) Hydrogen peroxide dependent oxidation of quercetin by intact spinach chloroplasts. Plant Physiol 74:852–857PubMedCrossRefGoogle Scholar
  346. Takahama U (1985) Inhibition of lipoxygenase-dependent lipid peroxidation by quercetin: mechanism of antioxidative function. Phytochemistry 24:1443–1446CrossRefGoogle Scholar
  347. Talaz O, Gülçin İ, Göksu S, Saracoglu N (2009) Antioxidant activity of 5, 10-dihydroindeno[1, 2-b]indoles containing substituents on dihydroindeno part. Bioorg Med Chem 17:6583–6589PubMedCrossRefGoogle Scholar
  348. Tanizawa H, Ohkawa Y, Takino Y, Ueno A, Kageyama T, Hara S (1992) Studies on natural antioxidants in citrus species. I. Determination of antioxidant activities of citrus fruits. Chem Pharm Bull 40:1940–1942PubMedCrossRefGoogle Scholar
  349. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444PubMedCrossRefGoogle Scholar
  350. Thompson D, Moldeus P (1988) Cytotoxicity of butylated hydroxyanisole and butylated hydroxytoluene in isolated rat hepatocytes. Biochem Pharmacol 37:2201–2207PubMedCrossRefGoogle Scholar
  351. Timmermann TV (1990) Tocopherole-antioxidative Wirkung bei Fetten und Ölen. Fat Sci Technol 92:201–206Google Scholar
  352. Tomiyama S, Sakai S, Nishiyama T, Yamada F (1993) Factors influencing the antioxidant activities of phenols by an ab initio study. Bull Chem Soc Jpn 66:299–304CrossRefGoogle Scholar
  353. Tournaire C, Croux S, Maurette MT, Beck I, Hocquaux M, Braun AM, Oliveros E (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1Δg) quenching. J Photochem Photobiol B-Biol 19:205–215CrossRefGoogle Scholar
  354. Tütem E, Apak R, Baykut F (1991) Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper(II). Analyst 116:89–94CrossRefGoogle Scholar
  355. Ullen H, Augustsson K, Gustavsson C, Steineck G (1997) Supplementary iron intake and risk of cancer: reversed causality? Cancer Lett 114:215–216PubMedCrossRefGoogle Scholar
  356. Valenzuela AB, Nieto SK (1996) Synthetic and natural antioxidants: food quality protectors. Grasas y Aceites 47:186–196CrossRefGoogle Scholar
  357. Valko M, Rhodes CJ, Moncola J, Izakovic M, Mazura M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Int 160:1–10CrossRefGoogle Scholar
  358. Valkonen M, Kuusi T (1997) Spectrophotometric assay for total peroxyl radical-trapping antioxidant potential in human serum. J Lipid Res 38:823–833PubMedGoogle Scholar
  359. van Acker SABE, van den Berg DZ, Tromp MNJL, Griffoen DH, van Bennekom WP, van der Vijgh WJF, Bast A (1996) Structural aspects of antioxidant activity of flavonoids. Free Radical Biol Med 20:331–342CrossRefGoogle Scholar
  360. Van den Berg R, Haenen GRMM, Van den Berg H, Bast A (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66:511–517CrossRefGoogle Scholar
  361. Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117CrossRefGoogle Scholar
  362. Vianello R, Maksic ZB (2006) Triadic analysis of substituent effects-gas-phase acidity of para-substituted phenols. Tetrahedron 62:3402–3411CrossRefGoogle Scholar
  363. Vinson JA, Su XH, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315–5321PubMedCrossRefGoogle Scholar
  364. Vinson J, Zubik L, Bose P, Samman N, Proch J (2005) Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 24:44–50PubMedGoogle Scholar
  365. Vonkruedener S, Schempp H, Elstner EF (1995) Gas chromatographic differentiation between myeloperoxidase activity and fenton-type oxidants. Free Radical Biol Med 19:141–146CrossRefGoogle Scholar
  366. Voss C, Sepulveda-Boza S, Zilliken FW (1992) New isoflavonoids as inhibitors of porcine 5-lipoxygenase. Biochem Pharmacol 44:157–162PubMedCrossRefGoogle Scholar
  367. Vriesman MF, Haenen GRMM, Westerveld GJ, Paquay JBG, Voss HP, Bast A (1997) A method for measuring nitric oxide radical scavenging activity. Scavenging properties of sulfur-containing compounds. Pharm World Sci 19:283–286PubMedCrossRefGoogle Scholar
  368. Wayner DDM, Burton GW, Ingold KU, Locke S (1985) Quantitative measurement of the total, peroxyl radical trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 18:33–37CrossRefGoogle Scholar
  369. Weber P, Bendich A, Schalch W (1996) Vitamin C and human health-a review of recent data relevant to human requirements. Int J Vit Nut Res 66:19–30Google Scholar
  370. White PJ, Xing Y (1997) Antioxidants from cereals and legumes. In: Shahidi F (ed) Natural antioxidants, chemistry, health effects, applications. AOCS Press, Champaign, pp 25–63Google Scholar
  371. Whitehead TP, Thorpe GHG, Maxwell SRJ (1992) Enhanced chemiluminescent assay for antioxidant capacity in biological fluids. Anal Chim Acta 266:265–277CrossRefGoogle Scholar
  372. Wichi HP (1988) Enhanced tumour development by butylated hydroxyanisole (BHA) from the perspective of effect on forestomach and oesophageal squamous epithelium. Food Chem Toxicol 26:717–723CrossRefGoogle Scholar
  373. Wickens AP (2001) Aging and the free radical theory. Resp Physiol 128:379–391CrossRefGoogle Scholar
  374. Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet-state of molecular oxygen in solution-an expanded and revised compilation. J Phys Chem Ref Data 24:663–1021CrossRefGoogle Scholar
  375. Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radical Biol Med 36:838–849CrossRefGoogle Scholar
  376. Wood RJ, Ronnenberg AG (2006) In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ (eds) Modern nutrition in health and disease, 10th edn. Lippincott Williams and Wilkins, Philadelphia, p 248Google Scholar
  377. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical methods, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183PubMedCrossRefGoogle Scholar
  378. Wu X, Gu L, Holden J, Haytowitz D, Gebhardt SE, Beecher G, Prior RL (2004) Factors in the development of a database of food total antioxidant capacity using lipophilic and hydrophilic oxygen radical absorbance capacity (ORACFL): a preliminary study of 28 foods. J Food Compos Anal 17:407–422CrossRefGoogle Scholar
  379. Yanishlieva N, Marinova E, Bankova V, Popov S, Marekov N (1984) Does the antioxidative activity of propolis depend on the flavonoid present? J Intern d’études et assemblée generals. Plovdiv, Bulletin de Liason 12:481–486Google Scholar
  380. Yu BP, Yang R (1996) Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis. Ann NY Acad Sci 786:1–11PubMedCrossRefGoogle Scholar
  381. Yuan YV, Bone DE, Carrington MF (2005) Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem 91:485–494CrossRefGoogle Scholar
  382. Zhang X, Kim WS, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV (2002) Interfering with nitric oxide measurements. 4, 5-diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid. J Biol Chem 277:48472–48478PubMedCrossRefGoogle Scholar
  383. Zigman S (2000) Lens UVA photobiology. J Ocul Pharmacol Th 16:161–165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of Sciences, Department of ChemistryAtatürk UniversityErzurumTurkey
  2. 2.Faculty of Sciences and LettersIbrahim Çeçen UniversityAgriTurkey

Personalised recommendations