Archives of Toxicology

, Volume 86, Issue 1, pp 1–12 | Cite as

The safety profile of imatinib in CML and GIST: long-term considerations

Review Article

Abstract

Imatinib mesylate is considered the standard first-line systemic treatment for patients with chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST) by targeting BCR-ABL and c-KIT tyrosine kinases, respectively. Indeed, imatinib has substantially changed the clinical management and improved the prognosis of both diseases. Treatment with imatinib is generally well tolerated, and the risk for severe adverse effects is low, generally occurring during the early phase of treatment and correlating with imatinib dose, phase of disease and patient’s characteristics. This article summarises recent data on safety profile of imatinib for the treatment of CML and GIST, including long-term side effects. Prolonged treatment with imatinib in both diseases demonstrates excellent tolerability. There are few significant concerns and those that have emerged, like cardiotoxicity, have far turned out to be exaggerated.

Keywords

Imatinib CML GIST Safety Toxicity 

Notes

Acknowledgments

Eirini Thanopoulou is a scholarship recipient of the Hellenic Society of Medical Oncologists (HeSMO).

References

  1. (MetaGIST) GSTM-AG (2010) Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J Clin Oncol 28(7):1247–53. doi:10.1200/JCO.2009.24.2099
  2. Agostino N, Chinchilli VM, Lynch CJ et al (2010) Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J Oncol Pharm Pract. doi:10.1177/1078155210378913
  3. Atallah E, Durand J-B, Kantarjian H, Cortes J (2007) Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood 110(17449798):1233–1237PubMedCrossRefGoogle Scholar
  4. Baccarani M, Cortes J, Pane F et al (2009) Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 27(19884523):6041–6051PubMedCrossRefGoogle Scholar
  5. Berman E, Nicolaides M, Maki RG et al (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354(19):2006–13. doi:10.1056/NEJMoa051140 Google Scholar
  6. Blanke CD, Demetri GD, von Mehren M et al (2008a) Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol 26(18235121):620–625PubMedCrossRefGoogle Scholar
  7. Blanke CD, Rankin C, Demetri GD et al (2008b) Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol 26(4):626–32. doi:10.1200/JCO.2007.13.4452
  8. Breccia M, Muscaritoli M, Aversa Z, Mandelli F, Alimena G (2004) Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J Clin Oncol 22(15542819):4653–4655PubMedCrossRefGoogle Scholar
  9. Buchdunger E, Zimmermann J, Mett H et al (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56(1):100–104PubMedGoogle Scholar
  10. Chitteti BR, Cheng Y-H, Poteat B et al (2010) Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115(20154218):3239–3248PubMedCrossRefGoogle Scholar
  11. Cortes J, Kim DW, Raffoux E et al (2008) Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia 22(12):2176–83. doi:10.1038/leu.2008.221 Google Scholar
  12. Cortes JE, Baccarani M, Guilhot F et al (2010) Phase III, randomized, open-label study of daily imatinib mesylate 400 mg versus 800 mg in patients with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase using molecular end points: tyrosine kinase inhibitor optimization and selectivity study. J Clin Oncol 28(20008622):424–430PubMedCrossRefGoogle Scholar
  13. Dagher R, Cohen M, Williams G et al (2002) Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 8(12374669):3034–3038PubMedGoogle Scholar
  14. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247(4944):824–830PubMedCrossRefGoogle Scholar
  15. Debiec-Rychter M, Sciot R, Le Cesne A et al (2006) KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42(16624552):1093–1103PubMedCrossRefGoogle Scholar
  16. Dematteo RP, Ballman KV, Antonescu CR et al (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669):1097–104. doi:10.1016/S0140-6736(09)60500-6 Google Scholar
  17. Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347(12181401):472–480PubMedCrossRefGoogle Scholar
  18. Dewar AL, Cambareri AC, Zannettino AC et al (2005) Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 105(8):3127–32. doi:10.1182/blood-2004-10-3967 Google Scholar
  19. Dewar AL, Farrugia AN, Condina MR et al (2006) Imatinib as a potential antiresorptive therapy for bone disease. Blood 107(16449525):4334–4337PubMedCrossRefGoogle Scholar
  20. Dingli D, Wolf RC, Vella A (2007) Imatinib and type 2 diabetes. Endocr Pract 13(17490925):126–130PubMedGoogle Scholar
  21. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–7. doi:10.1056/NEJM200104053441401 Google Scholar
  22. Druker BJ, Guilhot F, O’Brien SG et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–17. doi:10.1056/NEJMoa062867 Google Scholar
  23. El Hajj Dib I, Gallet M, Mentaverri R, Sevenet N, Brazier M, Kamel S (2006) Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity. Eur J Pharmacol 551(17049513):27–33PubMedCrossRefGoogle Scholar
  24. Esmaeli B, Prieto VG, Butler CE et al (2002) Severe periorbital edema secondary to STI571 (Gleevec). Cancer 95(12209733):881–887PubMedCrossRefGoogle Scholar
  25. Estabragh ZR, Knight K, Watmough SJ et al (2011) A prospective evaluation of cardiac function in patients with chronic myeloid leukaemia treated with imatinib. Leuk Res 35(1):49–51. doi:10.1016/j.leukres.2010.08.020 Google Scholar
  26. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM (1999) The biology of chronic myeloid leukemia. N Engl J Med 341(3):164–172. doi:10.1056/NEJM199907153410306 Google Scholar
  27. Fernandez A, Sanguino A, Peng Z et al (2007) An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest 117(18060038):4044–4054PubMedCrossRefGoogle Scholar
  28. Fitter S, Dewar AL, Kostakis P et al (2008) Long-term imatinib therapy promotes bone formation in CML patients. Blood 111(18042796):2538–2547PubMedCrossRefGoogle Scholar
  29. Fitter S, Vandyke K, Schultz CG, White D, Hughes TP, Zannettino AC (2010) Plasma adiponectin levels are markedly elevated in imatinib-treated chronic myeloid leukemia (CML) patients: a mechanism for improved insulin sensitivity in type 2 diabetic CML patients? J Clin Endocrinol Metab 95(8):3763–3767. doi:10.1210/jc.2010-0086 Google Scholar
  30. Gambacorti-Passerini CK, Kim DW, Mahon FX, Saglio G, Pane F, Guilhot F, Deininger MWN, Nagler A, Rambaldi A, Morra E, Antolini L, Kweon IY, Reiffers J, Tornaghi L, Valsecchi MG (2008) Imatinib Long Term Effects (ILTE) study: an independent, international study in CML patients In: 50th ASH Annual Meeting and Exposition. San Francisco, USAGoogle Scholar
  31. Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ (2004) Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res 10(15475456):6661–6668PubMedCrossRefGoogle Scholar
  32. Grey A, O’Sullivan S, Reid IR, Browett P (2006) Imatinib mesylate, increased bone formation, and secondary hyperparathyroidism. N Engl J Med 355(23):2494–2495. doi:10.1056/NEJMc062388 Google Scholar
  33. Gronchi A, Judson I, Nishida T et al (2009) Adjuvant treatment of GIST with imatinib: solid ground or still quicksand? A comment on behalf of the EORTC Soft Tissue and Bone Sarcoma Group, the Italian Sarcoma Group, the NCRI Sarcoma Clinical Studies Group (UK), the Japanese Study Group on GIST, the French Sarcoma Group and the Spanish Sarcoma Group (GEIS). Eur J Cancer 45(19286368):1103–1106Google Scholar
  34. Guetens G, De Boeck G, Highley M, Dumez H, Van Oosterom AT, de Bruijn EA (2003) Quantification of the anticancer agent STI-571 in erythrocytes and plasma by measurement of sediment technology and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1020(14661754):27–34PubMedCrossRefGoogle Scholar
  35. Guilhot F, Druker B, Larson RA et al (2009) High rates of durable response are achieved with imatinib after treatment with interferon alpha plus cytarabine: results from the International Randomized Study of Interferon and STI571 (IRIS) trial. Haematologica 94(12):1669–1675. doi:10.3324/haematol.2009.010629 Google Scholar
  36. Hagerkvist R, Sandler S, Mokhtari D, Welsh N (2007) Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J 21(17135364):618–628PubMedCrossRefGoogle Scholar
  37. Hamberg P, de Jong FA, Boonstra JG, van Doorn J, Verweij J, Sleijfer S (2006) Non-islet-cell tumor induced hypoglycemia in patients with advanced gastrointestinal stromal tumor possibly worsened by imatinib. J Clin Oncol 24(16782905):30–31CrossRefGoogle Scholar
  38. Hatfield A, Owen S, Pilot PR (2007) In reply to ‘Cardiotoxicity of the cancer therapeutic agent imatinib mesylate’. Nat Med 13(1):13; author reply 15–6. doi:10.1038/nm0107-13a Google Scholar
  39. Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21(14645423):4342–4349PubMedCrossRefGoogle Scholar
  40. Heinrich MC, Corless CL, Blanke CD et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24(16954519):4764–4774PubMedCrossRefGoogle Scholar
  41. Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580PubMedCrossRefGoogle Scholar
  42. Hochhaus A, Druker B, Sawyers C et al (2008) Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-alpha treatment. Blood 111(17932248):1039–1043PubMedGoogle Scholar
  43. Hughes TP, Branford S, White DL et al (2008) Impact of early dose intensity on cytogenetic and molecular responses in chronic- phase CML patients receiving 600 mg/day of imatinib as initial therapy. Blood 112(10):3965–73. doi:10.1182/blood-2008-06-161737 Google Scholar
  44. Janeway KA, Liegl B, Harlow A et al (2007) Pediatric KIT wild-type and platelet-derived growth factor receptor alpha-wild-type gastrointestinal stromal tumors share KIT activation but not mechanisms of genetic progression with adult gastrointestinal stromal tumors. Cancer Res 67(17909012):9084–9088PubMedCrossRefGoogle Scholar
  45. Joensuu H, Roberts PJ, Sarlomo-Rikala M et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344(14):1052–1056. doi:10.1056/NEJM200104053441404 Google Scholar
  46. Jonsson S, Olsson B, Ohlsson C, Lorentzon M, Mellstrom D, Wadenvik H (2008) Increased cortical bone mineralization in imatinib treated patients with chronic myelogenous leukemia. Haematologica 93(18508797):1101–1103PubMedCrossRefGoogle Scholar
  47. Judson IDdP E, Verweij J, Van Glabbeke M, Ma P, Peng B, Dimitrijevic S, Van Oosterom A (2003) Population pharmacokinetic (PK) analysis and PK-pharmacodynamic (PD) correlations in Phase I/II trial of imatinib in gastrointestinal stromal tumours (GIST) conducted by the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. In: ASCO Annual Meeting Chicago, vol 22. USAGoogle Scholar
  48. Judson I, Ma P, Peng B et al (2005) Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 55(4):379–386. doi:10.1007/s00280-004-0876-0
  49. Kantarjian H, Sawyers C, Hochhaus A et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346(11870241):645–652PubMedCrossRefGoogle Scholar
  50. Kantarjian HM, Giles F, Gattermann N et al (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110(17715389):3540–3546PubMedCrossRefGoogle Scholar
  51. Kerkela R, Grazette L, Yacobi R et al (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12(8):908–916. doi:10.1038/nm1446 Google Scholar
  52. Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM (1998) Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 152(9588894):1259–1269PubMedGoogle Scholar
  53. Komatsubara S, Mori S, Mashiba T et al (2003) Long-term treatment of incadronate disodium accumulates microdamage but improves the trabecular bone microarchitecture in dog vertebra. J Bone Miner Res: Off J Am Soc Bone Miner Res 18(3):512–520. doi:10.1359/jbmr.2003.18.3.512 Google Scholar
  54. Langer C, Gunawan B, Schuler P, Huber W, Fuzesi L, Becker H (2003) Prognostic factors influencing surgical management and outcome of gastrointestinal stromal tumours. Br J Surg 90(12594669):332–339PubMedCrossRefGoogle Scholar
  55. Le Cesne A, Ray-Coquard I, Bui BN et al (2010) Discontinuation of imatinib in patients with advanced gastrointestinal stromal tumours after 3 years of treatment: an open-label multicentre randomised phase 3 trial. Lancet Oncol 11(20864406):942–949PubMedCrossRefGoogle Scholar
  56. Li B, Boast S, de los Santos K et al (2000) Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Genet 24(10700189):304–308PubMedCrossRefGoogle Scholar
  57. Mahon F-X, Rea D, Guilhot J et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11(20965785):1029–1035PubMedCrossRefGoogle Scholar
  58. Mauro MJ, Deininger MW (2009) Management of drug toxicities in chronic myeloid leukaemia. Best Pract Res Clin Haematol 22(3):409–429. doi:10.1016/j.beha.2009.06.001 Google Scholar
  59. Miettinen M, Sarlomo-Rikala M, Lasota J (1999) Gastrointestinal stromal tumors: recent advances in understanding of their biology. Hum Pathol 30(10):1213–1220PubMedCrossRefGoogle Scholar
  60. Nishida T, Shirao K, Sawaki A et al (2008) Efficacy and safety profile of imatinib mesylate (ST1571) in Japanese patients with advanced gastrointestinal stromal tumors: a phase II study (STI571B1202). Int J Clin Oncol 13(18553235):244–251PubMedCrossRefGoogle Scholar
  61. O’Brien SG, Guilhot F, Larson RA et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(12637609):994–991004PubMedCrossRefGoogle Scholar
  62. Osorio S, Noblejas AG, Duran A, Steegmann JL (2007) Imatinib mesylate induces hypophosphatemia in patients with chronic myeloid leukemia in late chronic phase, and this effect is associated with response. Am J Hematol 82(5):394–395. doi:10.1002/ajh.20778 Google Scholar
  63. O’Sullivan S, Naot D, Callon K et al (2007) Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell-dependent mechanisms. J Bone Miner Res 22(17663639):1679–1689PubMedCrossRefGoogle Scholar
  64. O’Sullivan S, Horne A, Wattie D et al (2009) Decreased bone turnover despite persistent secondary hyperparathyroidism during prolonged treatment with imatinib. J Clin Endocrinol Metab 94(19174494):1131–1136PubMedCrossRefGoogle Scholar
  65. Peng B, Hayes M, Resta D et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22(14990650):935–942PubMedCrossRefGoogle Scholar
  66. Perik PJ, Rikhof B, de Jong FA, Verweij J, Gietema JA, van der Graaf WT (2008) Results of plasma N-terminal pro B-type natriuretic peptide and cardiac troponin monitoring in GIST patients do not support the existence of imatinib-induced cardiotoxicity. Ann Oncol: Off J Eur Soc Med Oncol/ESMO 19(2):359–361. doi:10.1093/annonc/mdm468 Google Scholar
  67. Ramanathan RK, Egorin MJ, Takimoto CHM et al (2008) Phase I and pharmacokinetic study of imatinib mesylate in patients with advanced malignancies and varying degrees of liver dysfunction: a study by the National Cancer Institute Organ Dysfunction Working Group. J Clin Oncol 26(18235115):563–569PubMedCrossRefGoogle Scholar
  68. Rousselot P, Huguet F, Rea D et al (2007) Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109(16973963):58–60PubMedCrossRefGoogle Scholar
  69. Rubin BP, Fletcher JA, Fletcher CDM (2000) Molecular insights into the histogenesis and pathogenesis of gastrointestinal stromal tumors. Int J Surg Pathol 8(11493959):5–10PubMedCrossRefGoogle Scholar
  70. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340(17):1330–1340. doi:10.1056/NEJM199904293401706 Google Scholar
  71. Sawyers CL, Hochhaus A, Feldman E et al (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99(11986204):3530–3539PubMedCrossRefGoogle Scholar
  72. Scheinfeld N (2006) Imatinib mesylate and dermatology part 2: a review of the cutaneous side effects of imatinib mesylate. J Drugs Dermatol 5(3):228–231PubMedGoogle Scholar
  73. Schellings MWM, Baumann M, van Leeuwen REW et al (2006) Imatinib attenuates end-organ damage in hypertensive homozygous TGR(mRen2)27 rats. Hypertension 47(16432052):467–474PubMedCrossRefGoogle Scholar
  74. Talpaz M, Silver RT, Druker BJ et al (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99(6):1928–1937PubMedCrossRefGoogle Scholar
  75. Tarn C, Skorobogatko YV, Taguchi T, Eisenberg B, von Mehren M, Godwin AK (2006) Therapeutic effect of imatinib in gastrointestinal stromal tumors: AKT signaling dependent and independent mechanisms. Cancer Res 66(16707477):5477–5486PubMedCrossRefGoogle Scholar
  76. Trent JC, Patel SS, Zhang J et al (2010) Rare incidence of congestive heart failure in gastrointestinal stromal tumor and other sarcoma patients receiving imatinib mesylate. Cancer 116(19885836):184–192PubMedGoogle Scholar
  77. Van den Abbeele AD (2008) The lessons of GIST–PET and PET/CT: a new paradigm for imaging. Oncologist 13(Suppl 2):8–13. doi:10.1634/theoncologist.13-S2-8 Google Scholar
  78. Van Glabbeke M, Verweij J, Casali PG et al (2006) Predicting toxicities for patients with advanced gastrointestinal stromal tumours treated with imatinib: a study of the European Organisation for Research and Treatment of Cancer, the Italian Sarcoma Group, and the Australasian Gastro-Intestinal Trials Group (EORTC-ISG-AGITG). Eur J Cancer 42(14):2277–2285. doi:10.1016/j.ejca.2006.03.029
  79. van Oosterom AT, Judson I, Verweij J et al (2001) Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358(11705489):1421–1423PubMedCrossRefGoogle Scholar
  80. Vandyke K, Fitter S, Dewar AL, Hughes TP, Zannettino ACW (2010) Dysregulation of bone remodeling by imatinib mesylate. Blood 115(19890095):766–774PubMedCrossRefGoogle Scholar
  81. Veneri D, Franchini M, Bonora E (2005) Imatinib and regression of type 2 diabetes. N Engl J Med 352(15758023):1049–1050PubMedCrossRefGoogle Scholar
  82. Verweij J, van Oosterom A, Blay JY et al (2003) Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J cancer 39(14):2006–2011Google Scholar
  83. Verweij J, Casali PG, Zalcberg J et al (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364(9440):1127–1134. doi:10.1016/S0140-6736(04)17098-0 Google Scholar
  84. Verweij J, Casali PG, Kotasek D et al (2007) Imatinib does not induce cardiac left ventricular failure in gastrointestinal stromal tumours patients: analysis of EORTC-ISG-AGITG study 62005. Eur J Cancer 43(17336514):974–978PubMedCrossRefGoogle Scholar
  85. Wolf A, Couttet P, Dong M et al (2010) Imatinib does not induce cardiotoxicity at clinically relevant concentrations in preclinical studies. Leuk Res 34(9):1180–1188. doi:10.1016/j.leukres.2010.01.004 Google Scholar
  86. Wu JY, Scadden DT, Kronenberg HM (2009) Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Mineral Res: Off J Am Soc Bone Miner Res 24(5):759–764. doi:10.1359/jbmr.090225 Google Scholar
  87. Yamauchi T, Kamon J, Minokoshi Y et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(12368907):1288–1295PubMedCrossRefGoogle Scholar
  88. Yang WS, Lee WJ, Funahashi T et al (2001) Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 86(8):3815–3819PubMedCrossRefGoogle Scholar
  89. Zalcberg JR, Verweij J, Casali PG et al (2005) Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J cancer 41(12):1751–1757. doi:10.1016/j.ejca.2005.04.034
  90. Zhu J, Yang Y, Zhou L, Jiang M, Hou M (2010) A long-term follow-up of the imatinib mesylate treatment for the patients with recurrent gastrointestinal stromal tumor (GIST): the liver metastasis and the outcome. BMC Cancer 10(20465813):199PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Royal Marsden NHS Foundation TrustLondonUK

Personalised recommendations