Advertisement

Archives of Toxicology

, Volume 85, Issue 12, pp 1575–1588 | Cite as

Variation in the internalization of differently sized nanoparticles induces different DNA-damaging effects on a macrophage cell line

  • Mingyi Zhang
  • Juan Li
  • Gengmei XingEmail author
  • Rui He
  • Wei Li
  • Yan Song
  • Haili Guo
Molecular Toxicology

Abstract

Although researchers have expended considerable effort on studying the cytotoxicity of nanomaterials, it is possible that there has been insufficient attention paid to their genotoxic potential. Here, we describe a test model that we have developed to evaluate the DNA-damaging effects of negatively charged nanoparticles of different sizes. We compared the DNA damaging effect induced by nanoparticles of various sizes and found that the effect is closely associated with the internalization pattern of the particles. Macrophage cell line RAW 264.7 cells were incubated with carboxylated polystyrene beads (COOH–PBs) ranging in size from 30 to 500 nm. Size-dependent DNA damage was detected, and the lesion induced by two carboxylated fullerene particles confirmed this observation. Confocal microscopy revealed that the entry pathways of these COOH–PBs shifted from direct penetration to endocytosis with increasing particle size, followed by changes in subcellular localization. Subsequent deposition of 30-nm COOH–PBs in the cytosol led to a reduction of Zn2+ and Mg2+ content in the nucleus and an increased p53 level in the whole cell rather than in nucleus, while localization of 50- and 100-nm COOH–PBs in acidic vesicles induced p53 accumulation in both types of extracts. Based on these results, we assume that the damage resulted from a disruption of the balance between DNA damage and repair.

Keywords

DNA damage Entry pathway Carboxylated nanoparticles Size-dependency RAW 264.7 

Notes

Acknowledgments

We are thankful for the funding supports from NSFC (10875136), the 973 program (2007CB935604, 2009CB930204, 2011CB933400), CAS (KJC-NM2007), and CAS Knowledge Innovation Program. We would like to acknowledge the scientists and the fellow research members at the Beijing Synchrotron Radiation Facility in helping with the XPS.

Supplementary material

204_2011_725_MOESM1_ESM.pdf (129 kb)
Supplementary material 1 (PDF 128 kb)

References

  1. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623PubMedCrossRefGoogle Scholar
  2. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410. doi: 10.1016/j.taap.2008.09.015 PubMedCrossRefGoogle Scholar
  3. Ahsan F, Rivas IP, Khan MA, Torres Suarez AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J Control Release 79(1–3):29–40PubMedCrossRefGoogle Scholar
  4. Alargova RG, Deguchi S, Tsujii K (2001) Stable colloidal dispersions of fullerenes in polar organic solvents. J Am Chem Soc 123(43):10460–10467PubMedCrossRefGoogle Scholar
  5. Bao G, Bao XR (2005) Shedding light on the dynamics of endocytosis and viral budding. Proc Natl Acad Sci USA 102(29):9997–9998. doi: 10.1073/pnas.050455102 PubMedCrossRefGoogle Scholar
  6. Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA, Hails LA, Ingham E, Verkade P, Lane J, Heesom K, Newson R, Case CP (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 4(12):876–883. doi: 10.1038/nnano.2009.313 PubMedCrossRefGoogle Scholar
  7. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631. doi: 10.1038/nrg2380 PubMedGoogle Scholar
  8. Clift MJD, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232(3):418–427PubMedCrossRefGoogle Scholar
  9. Deguchi S, Alargova RG, Tsujii K (2001) Stable dispersions of fullerenes, C-60 and C-70, in water. Preparation and characterization. Langmuir 17(19):6013–6017Google Scholar
  10. Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681(1):80–92. doi: 10.1016/j.mrrev.2008.03.001 PubMedCrossRefGoogle Scholar
  11. Goldman SC, Chen CY, Lansing TJ, Gilmer TM, Kastan MB (1996) The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization. Am J Pathol 148(5):1381–1385PubMedGoogle Scholar
  12. Hainaut P, Mann K (2001) Zinc binding and redox control of p53 structure and function. Antioxid Redox Signal 3(4):611–623PubMedCrossRefGoogle Scholar
  13. Hoelzl C, Knasmuller S, Misik M, Collins A, Dusinska M, Nersesyan A (2009) Use of single cell gel electrophoresis assays for the detection of DNA-protective effects of dietary factors in humans: recent results and trends. Mutat Res 681(1):68–79. doi: 10.1016/j.mrrev.2008.07.004 PubMedCrossRefGoogle Scholar
  14. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150. doi: 10.1038/nnano.2008.30 PubMedCrossRefGoogle Scholar
  15. Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49(5):399–405PubMedCrossRefGoogle Scholar
  16. Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18(53):7644–7655PubMedCrossRefGoogle Scholar
  17. Lankoff A, Wojcik A, Fessard V, Meriluoto J (2006) Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells. Toxicol Lett 164(3):239–248. doi: 10.1016/j.toxlet.2006.01.003 PubMedCrossRefGoogle Scholar
  18. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331PubMedCrossRefGoogle Scholar
  19. Lindgren M, Hallbrink M, Prochiantz A, Langel U (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103PubMedCrossRefGoogle Scholar
  20. Lipton AS, Heck RW, Primak S, McNeill DR, Wilson DM, Ellis PD (2008) Characterization of Mg2+ binding to the DNA repair protein apurinic/apyrimidic endonuclease 1 via solid-state Mg-25 NMR spectroscopy. J Am Chem Soc 130(29):9332–9341. doi: 10.1021/ja0776881 PubMedCrossRefGoogle Scholar
  21. May P, May E (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18(53):7621–7636PubMedCrossRefGoogle Scholar
  22. Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, Gun’ko YK, Byrne S, Rakovich YP, Donegan JF, Sukhanova A, Conroy J, Cottell D, Gaponik N, Rogach A, Volkov Y (2007) Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett 7(11):3452–3461. doi: 10.1021/nl0719832 PubMedCrossRefGoogle Scholar
  23. Oh Y, Swanson J (1996) Different fates of phagocytosed particles after delivery into macrophage lysosomes. J Cell Biol 132(4):585–593. doi: 10.1083/jcb.132.4.585 PubMedCrossRefGoogle Scholar
  24. Olive PL, Wlodek D, Banath JP (1991) DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 51(17):4671–4676PubMedGoogle Scholar
  25. Petushkov A, Intra J, Graham JB, Larsen SC, Salem AK (2009) Effect of crystal size and surface functionalization on the cytotoxicity of silicalite-1 nanoparticles. Chem Res Toxicol 22(7):1359–1368. doi: 10.1021/tx900153k PubMedCrossRefGoogle Scholar
  26. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377(Pt 1):159–169. doi: 10.1042/BJ20031253 PubMedCrossRefGoogle Scholar
  27. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195. doi: 10.1016/j.jconrel.2010.01.036 PubMedCrossRefGoogle Scholar
  28. Schwerdtle T, Hamann I, Jahnke G, Walter I, Richter C, Parsons JL, Dianov GL, Hartwig A (2007) Impact of copper on the induction and repair of oxidative DNA damage, poly(ADP-ribosyl)ation and PARP-1 activity. Mol Nutr Food Res 51(2):201–210. doi: 10.1002/mnfr.200600107 PubMedCrossRefGoogle Scholar
  29. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185(3):211–218PubMedCrossRefGoogle Scholar
  30. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 21(23):10644–10654. doi: 10.1021/La0513712 PubMedCrossRefGoogle Scholar
  31. Smith S (2001) The world according to PARP. Trends Biochem Sci 26(3):174–179PubMedCrossRefGoogle Scholar
  32. Stefanidou M, Maravelias C, Dona A, Spiliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80(1):1–9. doi: 10.1007/s00204-005-0009-5-> PubMedCrossRefGoogle Scholar
  33. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221. doi: 10.1002/(SICI)1098-2280(2000)35:3<206:AID-EM8>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  34. Verma A, Uzun O, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595. doi: 10.1038/nmat2202 PubMedCrossRefGoogle Scholar
  35. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001–1011PubMedCrossRefGoogle Scholar
  36. Wolf FI, Maier JAM, Nasulewicz A, Feillet-Coudray C, Simonacci M, Mazur A, Cittadini A (2007) Magnesium and neoplasia: From carcinogenesis to tumor growth and progression or treatment. Arch Biochem Biophys 458(1):24–32. doi: 10.1016/j.abb.2006.02.016 PubMedCrossRefGoogle Scholar
  37. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2007) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2(1):85–96CrossRefGoogle Scholar
  38. Ye C, Chen CY, Chen Z, Meng H, Xing L, Jiang YX, Yuan H, Xing GM, Zhao F, Zhao YL, Chai ZF, Fang XH, Han D, Chen L, Wang C, Wei TT (2006) In situ observation of C-60(C(COOH)(2))(2) interacting with living cells using fluorescence microscopy. Chin Sci Bull 51(9):1060–1064. doi: 10.1007/s11434-006-1060-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mingyi Zhang
    • 1
  • Juan Li
    • 1
  • Gengmei Xing
    • 1
    Email author
  • Rui He
    • 2
  • Wei Li
    • 1
  • Yan Song
    • 1
  • Haili Guo
    • 1
  1. 1.Lab for Bio-Environmental Effects of Nanomaterials and Nanosafety, Institute of High Energy PhysicsChinese Academy of ScienceBeijingChina
  2. 2.Research Center of Biomedicine and HealthHangzhou Normal UniversityHangzhouChina

Personalised recommendations