Advertisement

Archives of Toxicology

, Volume 85, Issue 12, pp 1517–1528 | Cite as

Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles

  • Boon Chin Heng
  • Xinxin Zhao
  • Eng Chok Tan
  • Nurulain Khamis
  • Aarti Assodani
  • Sijing Xiong
  • Christiane Ruedl
  • Kee Woei Ng
  • Joachim Say-Chye Loo
Inorganic Compounds

Abstract

Zinc oxide (ZnO) nanoparticles have wide-ranging applications in a diverse array of industrial and consumer products, from ceramic manufacture and paint formulation to sunscreens and haircare products. Hence, it is imperative to rigorously characterize the health and safety aspects of human exposure to ZnO nanoparticles. This study therefore evaluated the cellular association, cytotoxic and inflammatory potential of spherical and sheet-shaped ZnO nanoparticles (of approximately the same specific surface area ≈30 cm2/g) on mouse and human cell lines (RAW-264.7 and BEAS-2B respectively), as well as with primary cultures of mouse bone marrow-derived dendritic cells (DC). The WST-8 assay demonstrated dose-dependent effects on the cytotoxicity of spherical and sheet-shaped ZnO nanoparticles on both RAW-264.7 and BEAS-2B cells, even though there was no significant effect of shape on the cytotoxicity of ZnO nanoparticles. There was however higher cellular association of spherical versus sheet-shaped ZnO nanoparticles. Measurement of reactive oxygen species (ROS) with the 2′,7′-dichlorfluorescein-diacetate (DCFH-DA) assay indicated up to 4-folds increase in ROS level upon exposure to ZnO nanoparticles, but there was again no significant difference between both ZnO nanoparticle shapes. Exposure of primary dendritic cells to ZnO nanoparticles upregulated expression of CD80 and CD86 (well-known markers of DC activation and maturation) and stimulated release of pro-inflammatory cytokines—IL-6 and TNF-α, thus pointing to the potential of ZnO nanoparticles in inducing inflammation. Hence, our study indicated that ZnO nanoparticles can have potential detrimental effects on cells even at dosages where there are little or no observable cytotoxic effects.

Keywords

Cytotoxicity Inflammation Nanoparticle Oxide Zinc 

References

  1. Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25(3):409–416PubMedCrossRefGoogle Scholar
  2. Cole SW (2009) Chronic inflammation and breast cancer recurrence. J Clin Oncol 27(21):3418–3419PubMedCrossRefGoogle Scholar
  3. Edelstein AS, Cammarata RC (1998) Nanomaterials: synthesis, properties and applications, 2nd edn. Taylor and Francis, LondonGoogle Scholar
  4. Gelb LD, Gubbins KE (1998) Characterization of porous glasses: simulation models, adsorption isotherms, and the Brunauer–Emmett–Teller analysis method. Langmuir 14(8):2097–2111CrossRefGoogle Scholar
  5. Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med 48(9):1121–1132PubMedCrossRefGoogle Scholar
  6. Grandjean-Laquerriere A, Tabary O, Jacquot J, Richard D, Frayssinet P, Guenounou M, Laurent-Maquin D, Laquerriere P, Gangloff S (2007) Involvement of toll-like receptor 4 in the inflammatory reaction induced by hydroxyapatite particles. Biomaterials 28(3):400–404PubMedCrossRefGoogle Scholar
  7. Hackenberg S, Scherzed A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2010) Zinc oxide nanoparticles induce photocatalytic cell death in human head and neck squamous cell carcinoma cell lines in vitro. Int J Oncol 37(6):1583–1590PubMedGoogle Scholar
  8. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19(29):295103PubMedCrossRefGoogle Scholar
  9. He YT, Wan J, Tokunaga T (2006) Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanoparticle Res 10(2):321–332CrossRefGoogle Scholar
  10. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JSC (2010a) Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 48(6):1762–1766PubMedCrossRefGoogle Scholar
  11. Heng BC, Das GK, Zhao X, Ma LL, Tan TT, Ng KW, Loo JSC (2010b) Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays. Biointerphases 5(3):88–97Google Scholar
  12. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JSC (2011) Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Archives of Toxicology (in press). doi:  10.1007/s00204-010-0608-7
  13. Hsiao IL, Huang YJ (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ 409(7):1219–1228PubMedCrossRefGoogle Scholar
  14. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, Eisenbarth SC, Flavell RA (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA 107(50):21635–21640PubMedCrossRefGoogle Scholar
  15. Ishiyama M, Miyazono Y, Sasamoto K, Ohkura Y, Ueno K (1997) A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 44(7):1299–1305PubMedCrossRefGoogle Scholar
  16. Kaluz S, Van Meir EG (2011) At the crossroads of cancer and inflammation: ras rewires an HIF-driven IL-1 autocrine loop. J Mol Med 89(2):91–94PubMedCrossRefGoogle Scholar
  17. Kennedy IM, Wilson D, Barakat AI, HEI Health Review Committee (2009) Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Res Rep Health Eff Inst (136):3–32Google Scholar
  18. Khodr B, Khalil Z (2001) Modulation of inflammation by reactive oxygen species: implications for aging and tissue repair. Free Radic Biol Med 30(1):1–8PubMedCrossRefGoogle Scholar
  19. Lonkar P, Dedon PC (2011) Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer 128(9):1999–2009PubMedCrossRefGoogle Scholar
  20. Meulenkamp EA (1998) Size dependence of the dissolution of zno nanoparticles. J Physical Chem B 102:7764–7769CrossRefGoogle Scholar
  21. Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20(Suppl 1):235–241CrossRefGoogle Scholar
  22. Ng KW, Leong DT, Hutmacher DW (2005) The challenge to measure cell proliferation in two and three dimensions. Tissue Eng 11(1–2):182–191PubMedCrossRefGoogle Scholar
  23. O’Callaghan DS, O’Donnell D, O’Connell F, O’Byrne KJ (2010) The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol 5(12):2024–2036PubMedCrossRefGoogle Scholar
  24. Oguma K, Oshima H, Oshima M (2010) Inflammation, tumor necrosis factor and Wnt promotion in gastric cancer development. Future Oncol 6(4):515–526PubMedCrossRefGoogle Scholar
  25. Osmond MJ, McCall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4(1):15–41PubMedCrossRefGoogle Scholar
  26. Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44(17):6532–6549PubMedCrossRefGoogle Scholar
  27. Qin L, Block ML, Liu Y, Bienstock RJ, Pei Z, Zhang W, Wu X, Wilson B, Burka T, Hong JS (2005) Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J 19(6):550–557PubMedCrossRefGoogle Scholar
  28. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077PubMedCrossRefGoogle Scholar
  29. Raula M, Rashid MH, Paira TK, Dinda E, Mandal TK (2010) Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties. Langmuir 26(11):8769–8782PubMedCrossRefGoogle Scholar
  30. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 39(1):56–63PubMedCrossRefGoogle Scholar
  31. Schimmer RC, Schrier DJ, Flory CM, Dykens J, Tung DK, Jacobson PB, Friedl HP, Conroy MC, Schimmer BB, Ward PA (1997) Streptococcal cell wall-induced arthritis requirements for neutrophils, P-selectin, intercellular adhesion molecule-1, and macrophage-inflammatory protein-2. J Immunol 159(8):4103–4108PubMedGoogle Scholar
  32. Sethi G, Sung B, Aggarwal BB (2008) TNF: a master switch for inflammation to cancer. Front Biosci 13:5094–5107PubMedCrossRefGoogle Scholar
  33. Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4(9):565–573PubMedCrossRefGoogle Scholar
  34. Usui H (2009) Surfactant concentration dependence of structure and photocatalytic properties of zinc oxide rods prepared using chemical synthesis in aqueous solutions. J Colloid Interface Sci 336(2):667–674PubMedCrossRefGoogle Scholar
  35. Wahab R, Kaushik NK, Verma AK, Mishra A, Hwang IH, Yang YB, Shin HS, Kim YS (2011) Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. J Biol Inorg Chem 16(3):431–442PubMedCrossRefGoogle Scholar
  36. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10(1):45–65PubMedCrossRefGoogle Scholar
  37. Williams GM (2008) Antitumor necrosis factor-alpha therapy and potential cancer inhibition. Eur J Cancer Prev 17(2):169–177PubMedCrossRefGoogle Scholar
  38. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134PubMedCrossRefGoogle Scholar
  39. Xiang JH, Zhu PX, Masuda Y, Okuya M, Kaneko S, Koumoto K (2006) Flexible solar-cell from zinc oxide nanocrystalline sheets self-assembled by an in situ electrodeposition process. J Nanosci Nanotechnol 6(6):1797–1801PubMedCrossRefGoogle Scholar
  40. Yuan JH, Chen Y, Zha HX, Song LJ, Li CY, Li JQ, Xia XH (2010) Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf B Biointerfaces 76(1):145–150PubMedCrossRefGoogle Scholar
  41. Zhao X, Heng BC, Guo J, Tan TT, Ng KW, Loo SC (2011) In vitro assessment of cellular responses to the length effect of rod shaped nano-sized hydroxyapatite. Nanotoxicology (in press). doi:  10.3109/17435390.2010.503943
  42. Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44(9):2948–2956PubMedCrossRefGoogle Scholar
  43. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13(6):064031PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Boon Chin Heng
    • 1
  • Xinxin Zhao
    • 1
  • Eng Chok Tan
    • 2
  • Nurulain Khamis
    • 2
  • Aarti Assodani
    • 2
  • Sijing Xiong
    • 1
  • Christiane Ruedl
    • 2
  • Kee Woei Ng
    • 1
    • 3
  • Joachim Say-Chye Loo
    • 1
    • 4
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
  3. 3.Division of Materials Technology, School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  4. 4.Division of Materials Technology, School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations