Archives of Toxicology

, Volume 85, Issue 10, pp 1219–1233 | Cite as

Molecular characterization of an acidic phospholipase A2 from Bothrops pirajai snake venom: synthetic C-terminal peptide identifies its antiplatelet region

  • Sabrina S. Teixeira
  • Lucas B. Silveira
  • Franco M. N. da Silva
  • Daniela P. Marchi-Salvador
  • Floriano P. SilvaJr
  • Luiz Fernando M. Izidoro
  • André L. Fuly
  • Maria A. Juliano
  • Camila R. dos Santos
  • Mário T. Murakami
  • Suely V. Sampaio
  • Saulo L. da Silva
  • Andreimar M. Soares
Molecular Toxicology


This paper describes a biochemical and pharmacological characterization of BpirPLA2-I, the first acidic Asp49-PLA2 isolated from Bothrops pirajai. BpirPLA2-I caused hypotension in vivo, presented phospholipolytic activity upon artificial substrates and inhibitory effects on platelet aggregation in vitro. Moreover, a synthetic peptide of BpirPLA2-I, comprising residues of the C-terminal region, reproduced the antiplatelet activity of the intact protein. A cDNA fragment of 366 bp encompassing the mature form of BpirPLA2-I was cloned by reverse transcriptase-PCR of B. pirajai venom gland total RNA. A Bayesian phylogenetic analysis indicated that BpirPLA2-I forms a clade with other acid Asp49-PLA2 enzymes from the Bothrops genus, which are characterized by the high catalytic activity associated with anticoagulant or hypotensive activity or both. Comparison of the electrostatic potential (EP) on the molecular surfaces calculated from a BpirPLA2-I homology model and from the crystallographic models of a group of close homologues revealed that the greatest number of charge inversions occurred on the face opposite to the active site entrance, particularly in the Ca2+ ion binding loop. This observation suggests a possible relationship between the basic or acid character of PLA2 enzymes and the functionality of the Ca2+ ion binding loop.


Snake venom Acidic phospholipase A2 Biochemical and pharmacological characterization Bothrops pirajai Antiplatelet domain 



This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Instituto Nacional de Ciência e Tecnologia em Toxinas (INCT-Tox), Brazil. We are grateful to Prof. Dr. J. R. Giglio (FMRP-USP) for their manuscript revision; Prof. Dr. A. Nomizo (FCFRP-USP, Brazil), MSc J. Fernández and Prof. Dr. B. Lomonte (ICP, UCR, Costa Rica) for their collaboration in the cytotoxic and hypotension assays. Thank to E. A. Bastos (TT-FAPESP) for their helpful technical collaboration.


  1. Andrião-Escarso SH, Soares AM, Rodrigues VM, Angulo Y, Lomonte B, Gutiérrez JM, Giglio JR (2000) Myotoxic phospholipases A2 in Bothrops snake venoms: effects of chemical modifications on the enzymatic and pharmacological properties of Bothropstoxins from Bothrops jararacussu. Biochimie 82:755–763PubMedCrossRefGoogle Scholar
  2. Andrião-Escarso SH, Soares AM, Fontes MRM, Fuly AL, Corrêa FMA, Rosa JC, Greene LJ, Giglio JR (2002) Structural and functional characterization of an acidic platelet aggregation inhibitor and hypotensive Phospholipase A2 from Bothrops jararacussu snake venom. Biochem Pharmacol 64:723–732PubMedCrossRefGoogle Scholar
  3. Arni RK, Ward RJ (1996) Phospholipase A2—a structural review. Toxicon 34:827–841PubMedCrossRefGoogle Scholar
  4. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–169PubMedCrossRefGoogle Scholar
  5. Cogo JC, Lilla S, Souza GHMF, Hyslop S, De Nucci G (2006) Purification, sequencing and structural analysis of two acidic phospholipases A2 from the venom of Bothrops insularis (jararaca ilhoa). Biochimie 88:1947–1959PubMedCrossRefGoogle Scholar
  6. Correa LC, Marchi-Salvador DP, Cintra AC, Sampaio SV, Soares AM, Fontes MR (2008) Crystal structure of a myotoxic Asp49-Phospholipase A2 with low catalytic activity: insights into Ca2+-independent catalytic mechanism. Biochim Biophys Acta 1784:591–599PubMedGoogle Scholar
  7. Costa TR, Menaldo DL, Oliveira CZ, Santos-Filho NA, Teixeira SS, Nomizo A, Fuly AL, Monteiro MC, de Souza BM, Palma MS, Stábeli RG, Sampaio SV, Soares AM (2008) Myotoxic phospholipases A2 isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: cytotoxic effect on microorganism and tumor cells. Peptides 29(10):1645–1656PubMedCrossRefGoogle Scholar
  8. De Albuquerque Modesto JC, Spencer PJ, Fritzen M, Valença RC, Oliva MLV, da Silva MB, Chudzinski-Tavassi AM, Guarnieri MC (2006) BE-I-PLA2, a novel acidic Phospholipase A2 from Bothrops erythromelas venom: isolation, cloning and characterization as potent anti-platelet and inductor of prostaglandin I2 release by endothelial cells. Biochem Pharmacol 72:377–384PubMedCrossRefGoogle Scholar
  9. De Haas GH, Postema NM, Nieuwenhuizen W, van Deenen LLM (1968) Purification and properties of Phospholipase A from porcine pancreas. Biochim Biophys Acta 159:103–117PubMedGoogle Scholar
  10. De Paula R, Castro HC, Rodrigues CR, Melo PA, Fuly AL (2009) Structural and pharmacological features of phospholipases A2 from snake venoms. Protein Pept Lett 16:899–907PubMedCrossRefGoogle Scholar
  11. Dos Santos JI, Soares AM, Fontes MRM (2009) Comparative structural studies on Lys49-Phospholipase A2 from Bothrops genus reveal their myotoxic site. J Struct Biol 167:106–116PubMedCrossRefGoogle Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  13. Fernández J, Gutiérrez JM, Angulo Y, Sanz L, Juárez P, Calvete JJ, Lomonte B (2010) Isolation of an acidic phospholipase A2 from the venom of the snake Bothrops asper of Costa Rica: biochemical and toxicological characterization. Biochimie 92:273–283PubMedCrossRefGoogle Scholar
  14. Fuly AL, de Miranda AL, Zingali RB, Guimarães JA (2002) Purification and characterization of a phospholipase A2 isoenzyme isolated from Lachesis muta snake venom. Biochem Pharmacol 63:1589–1597PubMedCrossRefGoogle Scholar
  15. Gebrim LC, Marcussi S, Menaldo DL, de Menezes CS, Nomizo A, Hamaguchi A, Silveira-Lacerda EP, Homsi-Brandeburgo MI, Sampaio SV, Soares AM, Rodrigues VM (2009) Antitumor effects of snake venom chemically modified Lys49 phospholipase A2-like BthTX-I and a synthetic peptide derived from its C-terminal region. Biologicals 37(4):222–229PubMedCrossRefGoogle Scholar
  16. Gonnet GH, Cohen MA, Benner SA (1992) Exhaustive matching of the entire protein sequence database. Science 256:1443–1445PubMedCrossRefGoogle Scholar
  17. Guda C, Scheeff ED, Bourne PE, Shindyalov IN (2001) A new algorithm for the alignment of multiple protein structures using Monte Carlo optimization. Pac Symp Biocomput 6:275–286Google Scholar
  18. Gutiérrez JM, Lomonte B (1997) In: Kini RM (ed) Venom Phospholipase A2 enzymes: structure, function and mechanism. Wiley, Chichester, pp 321–352Google Scholar
  19. Gutiérrez JM, Avila C, Rojas E, Cerdas L (1988) An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon 26:411–413PubMedCrossRefGoogle Scholar
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  21. Harris JB, Grubb BD, Maltin CA, Dixon R (2000) The neurotoxicity of the venom Phospholipases A2; notexin and taipoxin. Exp Neurol 161:517–526PubMedCrossRefGoogle Scholar
  22. Huang HC, Lee CY (1984) Isolation and pharmacological properties of phospholipases A2, from Vipera russelli (Russell’s viper) snake venom. Toxicon 22:207–217PubMedCrossRefGoogle Scholar
  23. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comp Appl Biosci 8:275–282PubMedGoogle Scholar
  24. Ketelhut DFJ, Homem de Mello M, Veronese ELG, Esmeraldino LE, Murakami MT, Arni RK, Giglio JR, Cintra ACO, Sampaio SV (2003) Isolation, characterization and biological activity of acidic phospholipase A2 isoforms from Bothrops jararacussu snake venom. Biochimie 85:983–991PubMedCrossRefGoogle Scholar
  25. Korkmaz B, Attucci S, Juliano MA, Kalupov T, Jourdan ML, Juliano L, Gauthier F (2008) Measuring elastase, proteinase 3 and cathepsin G activities at the surface of human neutrophils with fluorescence resonance energy transfer substrates. Nat Protoc 3:991–1000PubMedCrossRefGoogle Scholar
  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  27. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291CrossRefGoogle Scholar
  28. Lomonte B, Angulo Y, Calderón L (2003a) An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon 42:885–901PubMedCrossRefGoogle Scholar
  29. Lomonte B, Angulo Y, Santamaría C (2003b) Comparative study of synthetic peptides corresponding to region 115–129 in Lys49 myotoxic phospholipases A2 from snake venoms. Toxicon 42:307–312PubMedCrossRefGoogle Scholar
  30. Lomonte B, Angulo Y, Moreno E (2010) Synthetic peptides derived from the C-terminal region of Lys49 phospholipase A2 homologues from viperidae snake venoms: biomimetic activities and potential applications. Curr Pharm 16(28):3224–3230CrossRefGoogle Scholar
  31. Lu QM, Jin Y, Wei JF, Wang WY, Xiong YL (2002) Biochemical and biological properties of Trimeresurus jerdonii venom and characterization of a platelet aggregation-inhibiting acidic phospholipase A2. J Nat Toxins 11:25–33PubMedGoogle Scholar
  32. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85PubMedCrossRefGoogle Scholar
  33. MacKerell AD Jr, Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) CHARMM: the energy function and its paramerization with an overview of the program. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester, pp 271–277Google Scholar
  34. Magro AJ, Takeda AAS, Soares AM, Fontes MRM (2005) Structure of BthA-I complexed with p-bromophenacyl bromide: possible correlations with lack of pharmacological activity. Acta Crystallogr D 61:1670–1677PubMedCrossRefGoogle Scholar
  35. Marchi-Salvador DP, Fernandes CAH, Amui SF, Soares AM, Fontes MRM (2006) Crystallization and preliminary X-ray diffraction analysis of a myotoxic Lys49-PLA2 from Bothrops jararacussu venom complexed with p-bromophenacyl bromide. Acta Crystallogr 62F:600–603Google Scholar
  36. Marchi-Salvador DP, Correa LC, Magro AJ, Oliveira CZ, Soares AM, Fontes MR (2008) Insights into the role of oligomeric state on the biological activities of crotoxin: crystal structure of a tetrameric phospholipase A2 formed by two isoforms of crotoxin B from Crotalus durissus terrificus venom. Proteins 72:883–891PubMedCrossRefGoogle Scholar
  37. Marchi-Salvador DP, Fernandes CA, Silveira LB, Soares AM, Fontes MR (2009) Crystal structure of a phospholipase A2 homologue complexed with p-bromophenacyl bromide reveals important structural changes associated with the inhibition of myotoxic activity. Biochim Biophys Acta 1794:1583–1590PubMedGoogle Scholar
  38. Murakami MT, Gabdoulkhakov A, Genov N, Cintra AC, Betzel C, Arni RK (2006) Insights into metal ion binding in phospholipases A2: ultra high-resolution crystal structures of an acidic phospholipase A2 in the Ca2+ free and bound states. Biochimie 88:543–549PubMedCrossRefGoogle Scholar
  39. Murillo LA, Lan CY, Agabian NM, Larios S, Lomonte B (2007) Fungicidal activity of a phospholipase-A2-derived synthetic peptide variant against Candida albicans. Rev Esp Quimioter 20(3):330–333PubMedGoogle Scholar
  40. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  41. Ogawa T, Nakashima K-I, Nobuhisa I, Deshimaru M, Shimohigashi Y, Fukumak Y, Sakaki Y, Hattori S, Ohno M (1996) Accelerated evolution of snake venom phospholipase a, isozymes for acquisition of diverse physiological functions. Toxicon 34:1229–1236PubMedCrossRefGoogle Scholar
  42. Ohno M, Chijiwa T, Oda-Ueda N, Ogawa T, Hattori S (2003) Molecular evolution of myotoxic phospholipases A2 from snake venom. Toxicon 42:841–854PubMedCrossRefGoogle Scholar
  43. Ownby CL, Selistre-de-Araujo HS, White SP, Flecther JE (1999) Lysine 49 phospholipase A2 proteins. Toxicon 37:411–445PubMedCrossRefGoogle Scholar
  44. Renetseder R, Brunie S, Dijkstra BW, Drenth J, Sigler PB (1985) A comparison of the crystal structures of phospholipases A2 from bovine pancreas and Crotalus atrox venom. J Biol Chem 260:11627–11636PubMedGoogle Scholar
  45. Roberto PG, Kashima S, Soares AM, Chioato L, Faça VM, Fuly AL, Astolfi-Filho S, Pereira JO, França SC (2004) Cloning and expression of an acidic platelet aggregation inhibitor phospholipase A2 cDNA from Bothrops jararacussu venom gland. Protein Expr Purif 37:102–108PubMedCrossRefGoogle Scholar
  46. Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear poisson-boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem 105B:6507–6514Google Scholar
  47. Rodrigues RS, Izidoro LF, Teixeira SS, Silveira LB, Hamaguchi A, Homsi-Brandeburgo MI, Selistre-de-Araujo HS, Giglio JR, Fuly AL, Soares AM, Rodrigues VM (2007) Isolation and functional characterization of a new myotoxic acidic phospholipase A2 from Bothrops pauloensis snake venom. Toxicon 50:153–165PubMedCrossRefGoogle Scholar
  48. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  49. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815PubMedCrossRefGoogle Scholar
  50. Santos-Filho NA, Silveira LB, Oliveira CZ, Bernardes CP, Menaldo DL, Fuly AL, Arantes EC, Sampaio SV, Mamede CCN, Beletti ME, Oliveira F, Soares AM (2008) A new acidic myotoxic, anti-platelet and prostaglandin I2 inductor phospholipase A2 isolated from Bothrops moojeni snake venom. Toxicon 52:908–917PubMedCrossRefGoogle Scholar
  51. Schaloske RH, Dennis EA (2006) The Phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 1761:1246–1259PubMedGoogle Scholar
  52. Serrano SMT, Reichl AP, Mentele R, Auerswld EA, Santoro ML, Sampaio CAM, Camargo ACM, Assakura MT (1999) A novel Phospholipase A2, Bj-PLA2, from the venom of the snake Bothrops jararaca: purification, primary structure analysis, and its characterization as a platelet-aggregation-inhibiting factor. Arch Biochem Biophys 367:26–32PubMedCrossRefGoogle Scholar
  53. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524PubMedCrossRefGoogle Scholar
  54. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedCrossRefGoogle Scholar
  55. Sitkoff D, Sharp KA, Honig B (1994a) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988CrossRefGoogle Scholar
  56. Sitkoff D, Lockhart DJ, Sharp KA, Honig B (1994b) Calculation of electrostatic effects at the amino terminus of an alpha helix. Biophys J 67:2251–2260PubMedCrossRefGoogle Scholar
  57. Soares AM, Giglio JR (2003) Chemical modifications of phospholipases A2 from snake venoms: effects on catalytic and pharmacological properties. Toxicon 42:855–868PubMedCrossRefGoogle Scholar
  58. Soares AM, Fontes MRM, Giglio JR (2004) Phospholipase A2 myotoxins from Bothrops snake venoms: structure-function relationship. Curr Org Chem 8:1–14CrossRefGoogle Scholar
  59. Valentin E, Lambeau G (2000) What can venom phospholipases A2 tell us about the functional diversity of mammalian secreted phospholipases A2? Biochimie 82:815–831PubMedCrossRefGoogle Scholar
  60. Vesterberg O (1972) Isoelectric focusing of proteins in polyacrylamide gels. Biochim Biophys Acta 257:11–13PubMedGoogle Scholar
  61. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedGoogle Scholar
  62. Zuccon A, Zuccon D (2008) Program distributed by the authors.

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sabrina S. Teixeira
    • 1
  • Lucas B. Silveira
    • 1
  • Franco M. N. da Silva
    • 1
  • Daniela P. Marchi-Salvador
    • 1
    • 2
  • Floriano P. SilvaJr
    • 3
  • Luiz Fernando M. Izidoro
    • 1
    • 4
  • André L. Fuly
    • 5
  • Maria A. Juliano
    • 6
  • Camila R. dos Santos
    • 7
  • Mário T. Murakami
    • 7
  • Suely V. Sampaio
    • 1
  • Saulo L. da Silva
    • 8
  • Andreimar M. Soares
    • 1
    • 9
  1. 1.Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoFCFRP-USPRibeirão PretoBrazil
  2. 2.Departamento de Biologia Molecular, Centro de Ciências Exatas e da NaturezaDBM-UFPBJoão PessoaBrazil
  3. 3.Laboratório de Bioquímica de Proteínas e Peptídeos, Instituto Oswaldo CruzIOC-FIOCRUZRio de JaneiroBrazil
  4. 4.Faculdade de Ciências Integradas do PontalUFUItuiutabaBrazil
  5. 5.Departamento de Biologia Celular e Molecular (GCM), Instituto de BiologiaUFFNiteróiBrazil
  6. 6.Departamento de BiofísicaUNIFESPSão PauloBrazil
  7. 7.Laboratório Nacional de BiociênciasCentro Nacional de Pesquisas em Energia e MateriaisCampinasBrazil
  8. 8.Universidade Federal de São João Del ReiUFSJ CampusDivinópolisBrazil
  9. 9.Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de Sao Paulo—USPRibeirão PretoBrazil

Personalised recommendations