Archives of Toxicology

, Volume 85, Issue 9, pp 1121–1131 | Cite as

A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice

  • Eun-Jung Park
  • Jinkyu Roh
  • Soo-Nam Kim
  • Min-sung Kang
  • Young-Ah Han
  • Younghun Kim
  • Jin Tae Hong
  • Kyunghee Choi
Organ Toxicity and Mechanisms


Large amounts of nanomaterials may reach both the natural and occupational environments. This represents a potential health hazard. People have forecasted that CNTs may lead to the toxicity such as mesothelioma and fibrosis like asbestos. To identify dominant immune responses induced by SWCNTs, we investigated the composition of bronchioalveolar lavage (BAL) cells, the secretion of cytokine and collagen, histopathology, protein expression, and cell phenotypes over time after a single administration of single-walled carbon nanotubes (SWCNT). In our results, the number of total cells and macrophages remained at the up-regulated level until Day 28, neutrophils rapidly increased at Day 1, and lymphocytes increased from Day 7. In the BAL fluid, pro-inflammatory cytokines rapidly increased at Day 1 and remained at an up-regulated level throughout the experimental period. IL-12 and IL-10 rapidly increased at Day 1 after administration and remained at a similar level until Day 28. IFN-γ and IL-4 reached the maximum at Day 1, and IL-5, TGF-β, and collagen reached the maximum at Day 7. IL-13 and IL-17 increased in a time-dependent manner. The distribution of B cells and cytotoxic T cells markedly increased at Days 7 and 14, and fibrotic lesions were histopathologically observed at Days 7 and 14. The expressions of caspase-3, p53, COL1A1, COX-2, iNOS, MMP-9, and MMP-2 were also markedly increased at Days 7 and 14. In addition, the expression of mesothelin, iNOS, MMP-9, and p53 was up-regulated until Day 28. Based on these findings, we suggest that a single intratracheal instillation of SWCNTs may induce early lung fibrosis and subchronic tissue damage.


SWCNT Lung fibrosis Mesothelin Cytokine Inflammation 

Supplementary material

204_2011_655_MOESM1_ESM.doc (302 kb)
Supplementary material 1 (DOC 302 kb)


  1. Chang K, Pastan I (1996) Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci USA 93(1):136–143PubMedCrossRefGoogle Scholar
  2. Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8(2):437–445PubMedCrossRefGoogle Scholar
  3. Cutroneo KR (2007) TGF-beta-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen 15(Suppl 1):S54–S60PubMedCrossRefGoogle Scholar
  4. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5PubMedCrossRefGoogle Scholar
  5. Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117(5):703–708PubMedGoogle Scholar
  6. Hassan R, Ho M (2008) Mesothelin targeted cancer immunotherapy. Eur J Cancer 44(1):46–53PubMedCrossRefGoogle Scholar
  7. Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ (2009) SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234(3):378–390PubMedCrossRefGoogle Scholar
  8. Inoue K, Takano H, Koike E, Yanagisawa R, Sakurai M, Tasaka S, Ishizaka A, Shimada A (2008) Effects of pulmonary exposure to carbon nanotubes on lung and systemic inflammation with coagulatory disturbance induced by lipopolysaccharide in mice. Exp Biol Med (Maywood) 233(12):1583–1590CrossRefGoogle Scholar
  9. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165(1):88–100PubMedCrossRefGoogle Scholar
  10. Karsenty G, Park RW (1995) Regulation of type I collagen genes expression. Int Rev Immunol 12(2–4):177–185PubMedCrossRefGoogle Scholar
  11. Kershenobich Stalnikowitz D, Weissbrod AB (2003) Liver fibrosis and inflammation. A review. Ann Hepatol 2(4):159–163PubMedGoogle Scholar
  12. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217PubMedCrossRefGoogle Scholar
  13. Lawrence DA (1996) Transforming growth factor-beta: a general review. Eur Cytokine Netw 7(3):363–374PubMedGoogle Scholar
  14. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Fichtg AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 5(9):1676–1684PubMedCrossRefGoogle Scholar
  15. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67(1):87–107PubMedCrossRefGoogle Scholar
  16. Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171PubMedCrossRefGoogle Scholar
  17. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Løvik M (2009) Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 109(1):113–123PubMedCrossRefGoogle Scholar
  18. Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D, Hoover MD, Castranova V, Vallyathan V (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116(9):1211–1217PubMedCrossRefGoogle Scholar
  19. Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K (2009a) Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259:113–121Google Scholar
  20. Park EJ, Yoon J, Choi K, Yi J, Park K (2009b) Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 260:37–46Google Scholar
  21. Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, Hirose A, Nishimura T, Ohashi N, Ogata A (2009) Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34(1):65–76PubMedCrossRefGoogle Scholar
  22. Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL, Ramesh GT (2007) Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol. 7(7):2466–2472PubMedCrossRefGoogle Scholar
  23. Shvedova AA, Kagan VE (2010) The role of nanotoxicology in realizing the ‘helping without harm’ paradigm of nanomedicine: lessons from studies of pulmonary effects of single-walled carbon nanotubes. J Intern Med 267(1):106–118PubMedCrossRefGoogle Scholar
  24. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708PubMedCrossRefGoogle Scholar
  25. Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, Antonini JM, Feng WH, Kommineni C, Reynolds J, Barchowsky A, Castranova V, Kagan VE (2008a) Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38(5):579–590PubMedCrossRefGoogle Scholar
  26. Shvedova AA, Kisin ER, Murray AR, Kommineni C, Castranova V, Fadeel B, Kagan VE (2008b) Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol 231(2):235–240PubMedCrossRefGoogle Scholar
  27. Silva IA, Graber J, Nyland JF, Silbergeld EK (2005) In vitro HgCl2 exposure of immune cells at different stages of maturation: effects on phenotype and function. Environ Res 98:341–348Google Scholar
  28. Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34(3):559–567PubMedCrossRefGoogle Scholar
  29. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53 ± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33(1):105–116PubMedCrossRefGoogle Scholar
  30. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis SC, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199:191–200Google Scholar
  31. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125PubMedCrossRefGoogle Scholar
  32. Wei G, Zhou H, Liu Z, Song Y, Wang L, Sun L, Li Z (2005) One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J Phys Chem B 109:8738–8743PubMedCrossRefGoogle Scholar
  33. Witasp E, Shvedova AA, Kagan VE, Fadeel B (2009) Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses. Inhal Toxicol 21(Suppl 1):131–136PubMedCrossRefGoogle Scholar
  34. Yang CM, Park JS, An KH, Lim SC, Seo K, Kim B, Park KA, Han S, Park CY, Lee YH (2005) Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids. J Phys Chem B 109(41):19242–19248PubMedCrossRefGoogle Scholar
  35. Yu X, Zhang J, Choi W, Choi JY, Kim JM, Gan L, Liu Z (2010) Nano Lett 10(9):3343–3349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Eun-Jung Park
    • 1
  • Jinkyu Roh
    • 2
  • Soo-Nam Kim
    • 3
  • Min-sung Kang
    • 3
  • Young-Ah Han
    • 3
  • Younghun Kim
    • 2
  • Jin Tae Hong
    • 4
  • Kyunghee Choi
    • 1
  1. 1.Environmental Health Risk Research Department, National Institute of Environmental ResearchIncheonKorea
  2. 2.Department of Chemical EngineeringKwangwoon UniversitySeoulKorea
  3. 3.Inhalation Toxicology Center, KIT Jeongeup CampusJeongeupKorea
  4. 4.College of Pharmacy and Medical Research CenterChungbuk National UniversityCheongju, ChungbukKorea

Personalised recommendations