Advertisement

Archives of Toxicology

, Volume 85, Issue 7, pp 787–798 | Cite as

Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish

  • Lisa Truong
  • Ian S. Moody
  • Dylan P. Stankus
  • Jeffrey A. Nason
  • Mark C. Lonergan
  • Robert L. TanguayEmail author
Inorganic Compounds

Abstract

As the number of nanoparticle-based products increase in the marketplace, there will be increased potential for human exposures to these engineered materials throughout the product life cycle. We currently lack sufficient data to understand or predict the inherent nanomaterial characteristics that drive nanomaterial–biological interactions and responses. In this study, we utilized the embryonic zebrafish (Danio rerio) model to investigate the importance of nanoparticle (NP) surface functionalization, in particular as it pertains to nanoparticle stability, on in vivo biological responses. This is a comparative study where two lead sulfide nanoparticles (PbS-NPs) with nearly identical core sizes, but functionalized with either sodium 3-mercaptopropanesulfonate (MT) or sodium 2,3-dimercaptopropanesulfonate (DT) ligand, were used. Developmental exposures and assessments revealed differential biological responses to these engineered nanoparticles. Exposures beginning at 6 h post fertilization (hpf) to MT-functionalized nanoparticles (PbS-MT) led to 100% mortality by 120 hpf while exposure to DT-functionalized nanoparticles (PbS-DT) produced less than a 5% incident in mortality at the same concentration. Exposure to the MT and DT ligands themselves did not produce adverse developmental effects when not coupled to the NP core. Following exposure, we confirmed that the embryos took up both PbS-MT and PbS-DT material using inductively coupled plasma-mass spectrometry (ICP-MS). The stability of the nanoparticles in the aqueous solution was also characterized. The nanoparticles decompose and precipitate upon exposure to air. Soluble lead ions were observed following nanoparticle precipitation and in greater concentration for the PbS-MT sample compared to the PbS-DT sample. These studies demonstrate that in vivo assessments can be effectively used to characterize the role of NP surface functionalization in predicting biological responses.

Keywords

Lead sulfide Nanoparticle Nanomaterial–biological interaction Toxicity Stability 

Notes

Acknowledgments

We would like to thank Sinnhuber Aquatic Research Laboratory for the embryos and Cari Buchner for her technical assistance. These studies were partially supported by National Institute of Environmental Health Sciences (NIEHS) P3000210, the Air Force Research Laboratory (AFRL) under agreement number FA8650-05-1-5041, Environmental Protection Agency (EPA) RD-833320, and the National Science Foundation (NSF) IGERT Fellowship program under Grant No. DGE-0549503. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of NIEHS, AFRL, EPA, NSF, or the US Government. Further support was provided by the W.M Keck Foundation.

References

  1. Agency for Toxic Substances, Disease Registry (ATSDR) (2007) Toxicological profile for lead. US Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  2. Aldana J, Wang Y, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophillic thiols. J Am Chem Soc 123(36):8844–8850PubMedCrossRefGoogle Scholar
  3. Barbazuk WB, Korf I et al (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10(9):1351–1358PubMedCrossRefGoogle Scholar
  4. Bharali DJ, Khalil M et al (2009) Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 4(1):1–7PubMedCrossRefGoogle Scholar
  5. De Gennardo LD (1978) The effects of lead nitrate on the central nervous system of the chick embryo I. Observations of light and electron microscopy. Growth 42(2):141–155Google Scholar
  6. den Hertog J (2005) Chemical genetics: drug screens in zebrafish. Biosci Rep 25(5–6):289–297CrossRefGoogle Scholar
  7. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478PubMedCrossRefGoogle Scholar
  8. Dodd A, Curtis PM et al (2000) Zebrafish: bridging the gap between development and disease. Hum Mol Genet 9(16):2443–2449PubMedCrossRefGoogle Scholar
  9. Furgeson D, Bar-llan O et al (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small X:1–14Google Scholar
  10. Goldsmith M-M, Leary J (2009) Nanobiosystems. WIREs Nanomed Nanobiotechnol 1:553–567CrossRefGoogle Scholar
  11. Guo L, Bussche AV et al (2008) Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4(6):721–727PubMedCrossRefGoogle Scholar
  12. Haendel MA, Tilton F et al (2004) Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicol Sci 81(2):390–400PubMedCrossRefGoogle Scholar
  13. Hall JB, Dobrovolskaia MA et al (2007) Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2(6):789–803CrossRefGoogle Scholar
  14. Hill AJ, Teraoka H et al (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86(1):6–19PubMedCrossRefGoogle Scholar
  15. Hinds S, Myrskog S, Levina L, Koleilat G, Yang J, Kelley SO, Sargent EH (2007) NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. J Am Chem Soc 129(23):7218–7219PubMedCrossRefGoogle Scholar
  16. Hoshino A, Fujioka K et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169CrossRefGoogle Scholar
  17. Hyun B, Chen H, Rey DA, Wise FW, Batt CA (2007) Near-infrared fluorescence imaging with water-soluble lead salt quantum dots. J Phys Chem B 111(20):5726–5730PubMedCrossRefGoogle Scholar
  18. Kimmel CB, Ballard WW et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310PubMedCrossRefGoogle Scholar
  19. Kirchner C, Liedl T et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338PubMedCrossRefGoogle Scholar
  20. Koleilat GI, Levina L et al (2008) Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2(5):833–840PubMedCrossRefGoogle Scholar
  21. Konstantatos G, Huang C, Levina L, Lu Z, Sargent EH (2005) Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv Funct Mater 15:1865–1869CrossRefGoogle Scholar
  22. Konstantatos G, Howard I et al (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442(7099):180–183PubMedCrossRefGoogle Scholar
  23. Kotov NA, Winter JO et al (2009) Nanomaterials for neural interfaces. Adv Mater 21(40):3970–4004CrossRefGoogle Scholar
  24. Lewinski N, Colvin V et al (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49PubMedCrossRefGoogle Scholar
  25. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2(1):50–64PubMedCrossRefGoogle Scholar
  26. Liu J, Aruguete DM, Murayama M, Hochella MF Jr (2009) Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS). Environ Sci Technol 43(21):8178–8183PubMedCrossRefGoogle Scholar
  27. Long TC, Saleh N et al (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352PubMedCrossRefGoogle Scholar
  28. McDonald SA, Konstantatos G et al (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4(2):138–142PubMedCrossRefGoogle Scholar
  29. Meng H, Chen Z et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175(1–3):102–110PubMedCrossRefGoogle Scholar
  30. Minchin RF, Martin DJ (2010) Nanoparticles for molecular imaging—an overview. Endocrinology 151(2):474–481PubMedCrossRefGoogle Scholar
  31. Moody IS, Stonas AR et al (2008) PbS nanocrystals functionalized with a short-chain, ionic, dithiol ligand. J Phys Chem C 112(49):19383–19389CrossRefGoogle Scholar
  32. Newman MD, Stotland M et al (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61(4):685–692PubMedCrossRefGoogle Scholar
  33. Parng C (2005) In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel 8(1):100–106PubMedGoogle Scholar
  34. Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6(2):218–223PubMedGoogle Scholar
  35. Samia ACS, Chen XB et al (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737PubMedCrossRefGoogle Scholar
  36. Sharma V, Sharma A, Kansal L (2010) The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food Chem Toxic 48(3):928–936CrossRefGoogle Scholar
  37. Teraoka H, Dong W et al (2003) Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom (Kyoto) 43(2):123–132CrossRefGoogle Scholar
  38. Ton C, Lin Y et al (2006) Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Res A Clin Mol Teratol 76(7):553–567PubMedCrossRefGoogle Scholar
  39. Usenko CY, Harper SL et al (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon N Y 45(9):1891–1898PubMedCrossRefGoogle Scholar
  40. White D, Cory-Slechta A, Gilbert E, Tiffany-Castiglioni E, Zawai H, Virgolini M, Rossi-George A, Lasley M et al (2007) New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 225(1):1–27PubMedCrossRefGoogle Scholar
  41. Wise JP Sr, Goodale BC et al (2009) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41PubMedCrossRefGoogle Scholar
  42. Yang LX, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Muller F, Strahle U (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28(2):245–253PubMedCrossRefGoogle Scholar
  43. Zelikoff JT, Li JH, Hartwig A, Wang XW, Costa M, Rossman TG (1988) Genetic toxicology of lead compounds. Carcinogenesis 9(10):1727–1732PubMedCrossRefGoogle Scholar
  44. Zhang TT, Stilwell JL et al (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6(4):800–808PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lisa Truong
    • 1
    • 2
  • Ian S. Moody
    • 3
  • Dylan P. Stankus
    • 2
    • 4
  • Jeffrey A. Nason
    • 2
    • 4
  • Mark C. Lonergan
    • 2
    • 3
  • Robert L. Tanguay
    • 1
    • 2
    Email author
  1. 1.Nanotoxicology Laboratory, Department of Environmental and Molecular Toxicology, ALS 1007Oregon State UniversityCorvallisUSA
  2. 2.Safer Nanomaterials and Nanomanufacturing InitiativeOregon Nanoscience and Microtechnologies InstituteCorvallisUSA
  3. 3.Department of Chemistry and the Materials Science InstituteUniversity of OregonEugeneUSA
  4. 4.School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations