Advertisement

Archives of Toxicology

, Volume 84, Issue 7, pp 521–540 | Cite as

Dopaminergic neurotoxicity following pulmonary exposure to manganese-containing welding fumes

  • Krishnan SriramEmail author
  • Gary X. Lin
  • Amy M. Jefferson
  • Jenny R. Roberts
  • Rebecca S. Chapman
  • Bean T. Chen
  • Joleen M. Soukup
  • Andrew J. Ghio
  • James M. Antonini
Inorganic Compounds

Abstract

The potential for development of Parkinson’s disease (PD)-like neurological dysfunction following occupational exposure to aerosolized welding fumes (WF) is an area of emerging concern. Welding consumables contain a complex mixture of metals, including iron (Fe) and manganese (Mn), which are known to be neurotoxic. To determine whether WF exposure poses a neurological risk particularly to the dopaminergic system, we treated Sprague–Dawley rats with WF particulates generated from two different welding processes, gas metal arc-mild steel (GMA-MS; low Mn, less water-soluble) and manual metal arc-hard surfacing (MMA-HS; high Mn, more water-soluble) welding. Following repeated intratracheal instillations (0.5 mg/rat, 1/week × 7 weeks) of GMA-MS or MMA-HS, elemental analysis and various molecular indices of neurotoxicity were measured at 1, 4, 35 or 105 days after last exposure. MMA-HS exposure, in particular, led to increased deposition of Mn in striatum and midbrain. Both fumes also caused loss of tyrosine hydroxylase (TH) protein in the striatum (~20%) and midbrain (~30%) by 1 day post-exposure. While the loss of TH following GMA-MS was transient, a sustained loss (34%) was observed in the midbrain 105 days after cessation of MMA-HS exposure. In addition, both fumes caused persistent down-regulation of dopamine D2 receptor (Drd2; 30–40%) and vesicular monoamine transporter 2 (Vmat2; 30–55%) mRNAs in the midbrain. WF exposure also modulated factors associated with synaptic transmission, oxidative stress, neuroinflammation and gliosis. Collectively, our findings demonstrate that repeated exposure to Mn-containing WF can cause persistent molecular alterations in dopaminergic targets. Whether such perturbations will lead to PD-like neuropathological manifestations remains to be elucidated.

Keywords

Brain Dopaminergic dysfunction Manganese Neurotoxicity Neurodegeneration Occupational exposure Parkinson’s disease Parkinsonism Welding Welding fume 

Abbreviations

BALF

Bronchoalveolar lavage fluid

CCL2

Chemokine–chemokine ligand 2

CXCL2

Chemokine-X-chemokine ligand 2

CNS

Central nervous system

COX

Cycloxygenase

DMT1

Divalent metal transporter 1

DRD2

Dopamine D2 receptor

EMR1

Egf-like module containing mucin-like hormone receptor-like 1

FLISA

Fluorescence-linked immunosorbent assay

GFAP

Glial fibrillary acidic protein

GMA-MS

Gas metal arc-mild steel

HO

Heme-oxygenase

ICP-AES

Inductive coupled plasma atomic absorption spectroscopy

IL6

Interleukin 6

ITGAM

Integrin αM

LDH

Lactate dehydrogenase

MMA-HS

Manual metal arc-hard surfacing

NOS

Nitric oxide synthase

PCR

Polymerase chain reaction

PD

Parkinson’s disease

PMN

Polymorphonuclear leukocyte

SDS

Sodium dodecyl sulfate

TH

Tyrosine hydroxylase

TNF

Tumor necrosis factor

VMAT2

Vesicular monoamine transporter 2

WF

Welding fume

Notes

Conflict of interest statement

The authors declare they have no proprietary, financial or personal interest of any kind or nature in any samples, products, supplies, service or company that could be construed as being a conflict of interest.

References

  1. ACGIH (1994) 1994–1995 Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati OH. p 36Google Scholar
  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271PubMedCrossRefGoogle Scholar
  3. Antonini JM, Krishna Murthy GG, Rogers RA, Albert R, Ulrich GD, Brain JD (1996) Pneumotoxicity and pulmonary clearance of different welding fumes after intratracheal instillation in the rat. Toxicol Appl Pharmacol 140(1):188–199PubMedCrossRefGoogle Scholar
  4. Antonini JM, Lewis AB, Roberts JR, Whaley DA (2003) Pulmonary effects of welding fumes: review of worker and experimental animal studies. Am J Ind Med 43:350–360PubMedCrossRefGoogle Scholar
  5. Antonini JM, Afshari AA, Stone S, Chen B, Schwegler-Berry D, Fletcher WG, Goldsmith WT, Vandestouwe KH, McKinney W, Castranova V, Frazer DG (2006) Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals. J Occup Environ Hyg 3(4):194–203PubMedCrossRefGoogle Scholar
  6. Antonini JM, Sriram K, Benkovic SA, Roberts JR, Stone S, Chen BT, Schwegler-Berry D, Jefferson AM, Billig BK, Felton CM, Hammer MA, Ma F, Frazer DG, O’Callaghan JP, Miller DB (2009) Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure. Neurotoxicology 30(6):915–925PubMedCrossRefGoogle Scholar
  7. Antonini JM, Roberts JR, Chapman R, Soukup JM, Ghio AJ, Sriram K (2010) Pulmonary toxicity and extrapulmonary tissue distribution of metals after repeated exposure to different welding fumes. Inhal Toxicol. doi:  10.3109/08958371003621641
  8. Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20(2–3):173–180PubMedGoogle Scholar
  9. Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35(1):1–32PubMedCrossRefGoogle Scholar
  10. Autissier N, Rochette L, Dumas P, Beley A, Loireau A, Bralet J (1982) Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. Toxicology 24:175–182PubMedCrossRefGoogle Scholar
  11. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154PubMedCrossRefGoogle Scholar
  12. Bonilla E (1980) L-Tyrosine hydroxylase activity in the rat brain after chronic oral administration of manganese chloride. Neurobehav Toxicol 2:37–41PubMedGoogle Scholar
  13. Bowler RM, Gysens S, Diamond E, Nakagawa S, Drezgic M, Roels HA (2006) Manganese exposure: neuropsychological and neurological symptoms and effects in welders. Neurotoxicology 27(3):315–326PubMedCrossRefGoogle Scholar
  14. Bowler RM, Nakagawa S, Drezgic M, Roels HA, Park RM, Diamond E, Mergler D, Bouchard M, Bowler RP, Koller W (2007a) Sequelae of fume exposure in confined space welding: a neurological and neuropsychological case series. Neurotoxicology 28(2):298–311PubMedCrossRefGoogle Scholar
  15. Bowler RM, Roels HA, Nakagawa S, Drezgic M, Diamond E, Park R, Koller W, Bowler RP, Mergler D, Bouchard M, Smith D, Gwiazda R, Doty RL (2007b) Dose–effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med 64(3):167–177PubMedCrossRefGoogle Scholar
  16. Brenneman KA, Wong BA, Buccellato MA, Costa ER, Gross EA, Dorman DC (2000) Direct olfactory transport of inhaled manganese 54MnCl2 to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol Appl Pharmacol 169(3):238–248PubMedCrossRefGoogle Scholar
  17. Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66(6):1198–1207PubMedCrossRefGoogle Scholar
  18. Calne DB, Chu NS, Huang CC, Lu CS, Olanow W (1994) Manganism and idiopathic parkinsonism: similarities and differences. Neurology 44(9):1583–1586PubMedGoogle Scholar
  19. Carlsson A (1975) Receptor-mediated control of dopamine metabolism. In: Usdin E, Bunney WE (eds) Pre- and postsynaptic receptors. Marcel Dekker, New York, pp 49–65Google Scholar
  20. Chung S–H (2008) Cyclin-dependent kinase 5: A critical regulator of neurotransmitter release. In: Ip NY, Tsai LH (eds) Cyclin dependent kinase 5. Springer, New York, pp 35–50Google Scholar
  21. Conrad ME, Umbreit JN, Moore EG, Hainsworth LN, Porubcin M, Simovich MJ, Nakada MT, Dolan K, Garrick MD (2000) Separate pathways for cellular uptake of ferric and ferrous iron. Am J Physiol Gastrointest Liver Physiol 279(4):G767–G774PubMedGoogle Scholar
  22. Crossgrove JS, Yokel RA (2004) Manganese distribution across the blood–brain barrier. III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Neurotoxicology 25(3):451–460PubMedCrossRefGoogle Scholar
  23. Crossgrove JS, Allen DD, Bukaveckas BL, Rhineheimer SS, Yokel RA (2003) Manganese distribution across the blood–brain barrier I. Evidence for carrier-mediated influx of manganese citrate as well as manganese and manganese transferrin. Neurotoxicology 24(1):3–13PubMedCrossRefGoogle Scholar
  24. Díaz-Véliz G, Mora S, Gómez P, Dossi MT, Montiel J, Arriagada C, Aboitiz F, Segura-Aguilar J (2004) Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor. Pharmacol Biochem Behav 77:245–251PubMedCrossRefGoogle Scholar
  25. Donaldson J (1987) The physiopathologic significance of manganese in brain: its relation to schizophrenia and neurodegenerative disorders. Neurotoxicology 8(3):451–462PubMedGoogle Scholar
  26. Dorman DC, Owens JG, Morgan KT (1997) Olfactory neurotoxicology. In: Lowndes HE, Reuhl KR (eds) Comprehensive toxicology: Nervous system and behavioral toxicology, vol 11. Elsevier Sciences, Cambridge UK, pp 281–294Google Scholar
  27. Dorman DC, Brenneman KA, McElveen AM, Lynch SE, Roberts KC, Wong BA (2002) Olfactory transport: a direct route of delivery of inhaled manganese phosphate to the rat brain. J Toxicol Environ Health A 65(20):1493–1511PubMedCrossRefGoogle Scholar
  28. Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB (2000) Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55(1):24–35PubMedCrossRefGoogle Scholar
  29. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdorster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178PubMedCrossRefGoogle Scholar
  30. Emara AM, el-Ghawabi SH, Madkour OI, el-Samra GH (1971) Chronic manganese poisoning in the dry battery industry. Br J Ind Med 28(1):78–82PubMedGoogle Scholar
  31. Erikson H, Mägiste K, Plantin LO, Fonnum F, Hedström KG, Theodorsson-Norheim E, Kristensson K, Stålberg E, Heilbronn E (1987) Effects of manganese oxide on monkeys as revealed by a combined neurochemical, histological and neurophysiological evaluation. Arch Toxicol 61:46–52CrossRefGoogle Scholar
  32. Filipov NM, Seegal RF, Lawrence DA (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicol Sci 84(1):139–148PubMedCrossRefGoogle Scholar
  33. Finkelstein MM, Jerrett M (2007) A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 104(3):420–432PubMedCrossRefGoogle Scholar
  34. Fored CM, Fryzek JP, Brandt L, Nise G, Sjögren B, McLaughlin JK, Blot WJ, Ekbom A (2006) Parkinson’s disease and other basal ganglia or movement disorders in a large nationwide cohort of Swedish welders. Occup Environ Med 63(2):135–140PubMedCrossRefGoogle Scholar
  35. Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line–an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20(5):776–783PubMedCrossRefGoogle Scholar
  36. Gianutsos G, Morrow GR, Morris JB (1997) Accumulation of manganese in rat brain following intranasal administration. Fundam Appl Toxicol 37(2):102–105PubMedCrossRefGoogle Scholar
  37. Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B (2006) Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Hum Mol Genet 15(2):299–305PubMedCrossRefGoogle Scholar
  38. Gruenheid S, Canonne-Hergaux F, Gauthier S, Hackam DJ, Grinstein S, Gros P (1999) The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 189(5):831–841PubMedCrossRefGoogle Scholar
  39. Guilarte TR, Chen MK, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS (2006) Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 202(2):381–390PubMedCrossRefGoogle Scholar
  40. Guilarte TR, Burton NC, McGlothan JL, Verina T, Zhou Y, Alexander M, Pham L, Griswold M, Wong DF, Syversen T, Schneider JS (2008) Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): implications to manganese-induced parkinsonism. J Neurochem 107(5):1236–1247PubMedCrossRefGoogle Scholar
  41. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488PubMedCrossRefGoogle Scholar
  42. Gupta SK, Murthy RC, Chandra SV (1980) Neuromelanin in manganese-exposed primates. Toxicol Lett 6(1):17–20PubMedCrossRefGoogle Scholar
  43. Gwiazda RH, Lee D, Sheridan J, Smith DR (2002) Low cumulative manganese exposure affects striatal GABA but not dopamine. Neurotoxicology 23(1):69–76PubMedCrossRefGoogle Scholar
  44. Hastings TG, Zigmond MJ (1997) Loss of dopaminergic neurons in parkinsonism: possible role of reactive dopamine metabolites. J Neural Transm Suppl 49:103–110PubMedGoogle Scholar
  45. Hastings TG, Lewis DA, Zigmond MJ (1996) Reactive dopamine metabolites and neurotoxicity: implications for Parkinson’s disease. Adv Exp Med Biol 387:97–106PubMedGoogle Scholar
  46. Heales SJ, Bolaños JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410(2):215–228PubMedCrossRefGoogle Scholar
  47. Henriksson J, Tallkvist J, Tjälve H (1999) Transport of manganese via the olfactory pathway in rats: dosage dependency of the uptake and subcellular distribution of the metal in the olfactory epithelium and the brain. Toxicol Appl Pharmacol 156(2):119–128PubMedCrossRefGoogle Scholar
  48. Huang CC, Lu CS, Chu NS, Hochberg F, Lilienfeld D, Olanow W, Calne DB (1993) Progression after chronic manganese exposure. Neurology 43(8):1479–1483PubMedGoogle Scholar
  49. Hunter DD, Undem BJ (1999) Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med 159:1943–1948PubMedGoogle Scholar
  50. Huntley GW, Morrison JH, Prikhozhan A, Sealfon SC (1992) Localization of multiple dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum. Mol Brain Res 15:181–188PubMedCrossRefGoogle Scholar
  51. ICRP (1994) Human respiratory tract model for radiological protection: a report of a task group of the international commission on radiological protection. Annals ICRP 24(1–3):267–272Google Scholar
  52. Jenkins NT, Pierce WM-G, Eagar TW (2005) Particle size distribution of gas metal and flux cored arc welding fumes. Welding J 84:156S–163SGoogle Scholar
  53. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S38PubMedCrossRefGoogle Scholar
  54. Josephs KA, Ahlskog JE, Klos KJ, Kumar N, Fealey RD, Trenerry MR, Cowl CT (2005) Neurologic manifestations in welders with pallidal MRI T1 hyperintensity. Neurology 64(12):2033–2039PubMedCrossRefGoogle Scholar
  55. Karlsen JT, Farrants G, Torgrimsen T, Reith A (1992) Chemical composition and morphology of welding fume particles and grinding dusts. Am Ind Hyg Assoc J 53(5):290–297PubMedGoogle Scholar
  56. Kepler GM, Richardson RB, Morgan KT, Kimbell JS (1998) Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey. Toxicol Appl Pharmacol 150(1):1–11PubMedCrossRefGoogle Scholar
  57. Kessler KR, Wunderlich G, Hefter H, Seitz RJ (2003) Secondary progressive chronic manganism associated with markedly decreased striatal D2 receptor density. Mov Disord 18(2):217–218PubMedCrossRefGoogle Scholar
  58. Kim Y, Kim JW, Ito K, Lim HS, Cheong HK, Kim JY, Shin YC, Kim KS, Moon Y (1999) Idiopathic parkinsonism with superimposed manganese exposure: utility of positron emission tomography. Neurotoxicology 20(2–3):249–252PubMedGoogle Scholar
  59. Kimbell JS, Godo MN, Gross EA, Joyner DR, Richardson RB, Morgan KT (1997) Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. Toxicol Appl Pharmacol 145:388–398PubMedCrossRefGoogle Scholar
  60. Koller WC, Lyons KE, Truly W (2004) Effect of levodopa treatment for parkinsonism in welders: a double-blind study. Neurology 62(5):730–733PubMedGoogle Scholar
  61. Korczynski RE (2000) Occupational health concerns in the welding industry. Appl Occup Environ Hyg 15(12):936–945PubMedCrossRefGoogle Scholar
  62. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318PubMedCrossRefGoogle Scholar
  63. Liu Y, Edwards RH (1997) The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci 20:125–156PubMedCrossRefGoogle Scholar
  64. Lu CS, Huang CC, Chu NS, Calne DB (1994) Levodopa failure in chronic manganism. Neurology 44(9):1600–1602PubMedGoogle Scholar
  65. Lucchini R, Apostoli P, Perrone C, Placidi D, Albini E, Migliorati P, Mergler D, Sassine MP, Palmi S, Alessio L (1999) Long-term exposure to “low levels” of manganese oxides and neurofunctional changes in ferroalloy workers. Neurotoxicology 20(2–3):287–297PubMedGoogle Scholar
  66. Lucchini RG, Albini E, Benedetti L, Borghesi S, Coccaglio R, Malara EC, Parrinello G, Garattini S, Resola S, Alessio L (2007) High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med 50(11):788–800PubMedCrossRefGoogle Scholar
  67. Mansour A, Meador-Woodruff JH, Camp DM, Robinson TE, Bunzow J, Van Tol H, Civelli O, Akil H, Watson SJ (1990) The effects of nigrostriatal 6-hydroxydopamine lesions on dopamine D2 receptor mRNA and opioid systems. Prog Clin Biol Res 328:227–230PubMedGoogle Scholar
  68. Marsh GM, Gula MJ (2006) Employment as a welder and Parkinson’s disease among heavy equipment manufacturing workers. J Occup Environ Med 48(10):1031–1046PubMedCrossRefGoogle Scholar
  69. Matczak W, Chmielnicka J (1993) Relation between various chromium compounds and some other elements in fumes from manual metal arc stainless steel welding. Br J Ind Med 50(3):244–251PubMedGoogle Scholar
  70. Matczak W, Przybylska-Stanislawska M (2004) Determination of fumes and their elements from flux cored arc welding. Med Pr 55(6):481–489PubMedGoogle Scholar
  71. Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, Taniguchi H (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271(35):21108–21113PubMedCrossRefGoogle Scholar
  72. Meador-Woodruff JH, Mansour A (1991) Expression of the dopamine D2 receptor gene in brain. Biol Psych 30:985–1007CrossRefGoogle Scholar
  73. Meador-Woodruff JH, Mansour A, Bunzow JR, Van Tol HHM, Watson SJ, Civelli O (1989) Distribution of D2 receptor mRNA in rat brain. Proc Natl Acad Sci USA 86:7625–7628PubMedCrossRefGoogle Scholar
  74. Mengod G, Martinez-Mir MI, Vilaró PalaciosJM (1989) Localization of the mRNA for the dopamine D2 receptor in the rat brain by in situ hybridization histochemistry. Proc Natl Acad Sci USA 86:8560–8564PubMedCrossRefGoogle Scholar
  75. Meo SA, Al-Khlaiwi T (2003) Health hazards of welding fumes. Saudi Med J 24(11):1176–1182PubMedGoogle Scholar
  76. Mergler D, Baldwin M (1997) Early manifestations of manganese neurotoxicity in humans: an update. Environ Res 73(1–2):92–100PubMedCrossRefGoogle Scholar
  77. Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J, Aschner JL, Aschner M (2007) Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci 98(1):198–205PubMedCrossRefGoogle Scholar
  78. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211(1):13–16PubMedCrossRefGoogle Scholar
  79. Murphy VA, Wadhwani KC, Smith QR, Rapoport SI (1991) Saturable transport of manganese(II) across the rat blood–brain barrier. J Neurochem 57(3):948–954PubMedCrossRefGoogle Scholar
  80. Nagy JI, Lee T, Seeman P, Fibiger HC (1978) Direct evidence for presynaptic and postsynaptic dopamine receptors in brain. Nature 274(5668):278–281PubMedCrossRefGoogle Scholar
  81. National Institute for Occupational Safety and Health (NIOSH) (2003) Elements (ICP): Method 7303. In NIOSH manual of analytical methods. 4th edn, Issue 2, U.S. Department of Health and Human Services, Publication No. 2003–154. Washington, DC: NIOSHGoogle Scholar
  82. Neff NH, Barrett RE, Costa E (1969) Selective depletion of caudate nucleus dopamine and serotonin during chronic manganese dioxide administration to squirrel monkeys. Experientia 25(11):1140–1141PubMedCrossRefGoogle Scholar
  83. Nelson K, Golnick J, Korn T, Angle C (1993) Manganese encephalopathy: utility of early magnetic resonance imaging. Br J Ind Med 50:510–513PubMedGoogle Scholar
  84. Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PHM, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–1668PubMedGoogle Scholar
  85. Normandin L, Panisset M, Zayed J (2002) Manganese neurotoxicity: behavioral, pathological, and biochemical effects following various routes of exposure. Rev Environ Health 17:189–217PubMedGoogle Scholar
  86. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445PubMedCrossRefGoogle Scholar
  87. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543PubMedCrossRefGoogle Scholar
  88. Occupational Outlook Handbook (OOH), 2008-09 Edition. U.S. Bureau of Labor Statistics Office of Occupational Statistics and Employment Projections, Washington, DC. http://www.bls.gov/OCO
  89. Olanow CW (2004) Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223PubMedCrossRefGoogle Scholar
  90. Olanow CW, Good PF, Shinotoh H, Hewitt KA, Vingerhoets F, Snow BJ, Beal MF, Calne DB, Perl DP (1996) Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic, and biochemical study. Neurology 46(2):492–498PubMedGoogle Scholar
  91. Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20(2–3):227–238PubMedGoogle Scholar
  92. Park RM, Schulte PA, Bowman JD, Walker JT, Bondy SC, Yost MG, Touchstone JA, Dosemeci M (2005) Potential occupational risks for neurodegenerative diseases. Am J Ind Med 48(1):63–77PubMedCrossRefGoogle Scholar
  93. Park J, Yoo CI, Sim CS, Kim JW, Yi Y, Shin YC, Kim DH, Kim Y (2006) A retrospective cohort study of Parkinson’s disease in Korean shipbuilders. Neurotoxicology 27(3):445–449PubMedCrossRefGoogle Scholar
  94. Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66(8):675–682PubMedCrossRefGoogle Scholar
  95. Rabin O, Hegedus L, Bourre JM, Smith QR (1993) Rapid brain uptake of manganese (II) across the blood–brain barrier. J Neurochem 61(2):509–517PubMedCrossRefGoogle Scholar
  96. Rabinovic AD, Lewis DA, Hastings TG (2000) Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience 101(1):67–76PubMedCrossRefGoogle Scholar
  97. Racette BA, McGee-Minnich L, Moerlein SM, Mink JW, Videen TO, Perlmutter JS (2001) Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology 56(1):8–13PubMedGoogle Scholar
  98. Racette BA, Tabbal SD, Jennings D, Good L, Perlmutter JS, Evanoff B (2005) Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology 64(2):230–235PubMedGoogle Scholar
  99. Reasor MJ, Antonini JM (2000) Pulmonary responses to single versus multiple intratracheal instillations of silica in rats. J Toxicol Environ Health 62:9–21CrossRefGoogle Scholar
  100. Rodier J (1955) Manganese poisoning in Moroccan miners. Br J Ind Med 12(1):21–35PubMedGoogle Scholar
  101. Sadek AH, Rauch R, Schulz PE (2003) Parkinsonism due to manganism in a welder. Int J Toxicol 22(5):393–401PubMedGoogle Scholar
  102. Sferlazza SJ, Beckett WS (1991) The respiratory health of welders. Am Rev Respir Dis 143:1134–1148PubMedGoogle Scholar
  103. Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H, Morita T (2006) Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol 34(7):949–957PubMedCrossRefGoogle Scholar
  104. Shinotoh H, Snow BJ, Hewitt KA, Pate BD, Doudet D, Nugent R, Perl DP, Olanow W, Calne DB (1995) MRI and PET studies of manganese-intoxicated monkeys. Neurology 45(6):1199–1204PubMedGoogle Scholar
  105. Sistrunk SC, Ross MK, Filipov NM (2007) Direct effects of manganese compounds on dopamine and its metabolite Dopac: an in vitro study. Environ Toxicol Pharmacol 23(3):286–296PubMedCrossRefGoogle Scholar
  106. Sjogren B, Gyntelberg F, Hilt B (2006) Ischemic heart disease and welding in Scandinavian studies. Scand J Work Environ Health 2:50–53Google Scholar
  107. Sjögren B, Fossum T, Lindh T, Weiner J (2002) Welding and ischemic heart disease. Int J Occup Environ Health 8(4):309–311PubMedGoogle Scholar
  108. Skirboll LR, Grace AA, Bunney BS (1979) Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82PubMedCrossRefGoogle Scholar
  109. Sloot WN, van der Sluijs-Gelling AJ, Gramsbergen JBP (1994) Selective lesions by manganese and extensive damage by iron after injection into rat striatum or hippocampus. J Neurochem 62:205–216PubMedCrossRefGoogle Scholar
  110. Spadoni F, Stefani A, Morello M, Lavaroni F, Giacomini P, Sancesario G (2000) Selective vulnerability of pallidal neurons in the early phases of manganese intoxication. Exp Brain Res 135(4):544–551PubMedCrossRefGoogle Scholar
  111. Sriram K, O’Callaghan JP (2005) Signaling mechanisms underlying toxicant-induced gliosis. In: Aschner M, Costa LG (eds) The role of glia in neurotoxicity, 2nd edn. CRC press, Boca Raton, FL, pp 141–171Google Scholar
  112. Sriram K, O’Callaghan JP (2007) Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2(2):140–153PubMedCrossRefGoogle Scholar
  113. Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749(1):44–52PubMedCrossRefGoogle Scholar
  114. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: Implications for Parkinson’s disease. FASEB J 16(11):1474–1476PubMedGoogle Scholar
  115. Sriram K, Miller DB, O’Callaghan JP (2006a) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 96(3):706–718PubMedCrossRefGoogle Scholar
  116. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2006b) Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: Role of TNF-α. FASEB J 20:670–682PubMedCrossRefGoogle Scholar
  117. Stampfer MJ (2009) Welding occupations and mortality from Parkinson’s disease and other neurodegenerative diseases among United States men, 1985–1999. J Occup Environ Hyg 6(5):267–272PubMedCrossRefGoogle Scholar
  118. Stanwood GD, Leitch DB, Savchenko V, Wu J, Fitsanakis VA, Anderson DJ, Stankowski JN, Aschner M, McLaughlin B (2009) Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. J Neurochem 110(1):378–389PubMedCrossRefGoogle Scholar
  119. Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6(2):235–243PubMedGoogle Scholar
  120. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581PubMedCrossRefGoogle Scholar
  121. Subramaniam RP, Richardson RB, Morgan KT, Guilmette RA, Kimbell JS (1998) Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal Toxicol 10:91–120CrossRefGoogle Scholar
  122. Takeda A, Sotogaku N, Oku N (2002) Manganese influences the levels of neurotransmitters in synapses in rat brain. Neuroscience 114(3):669–674PubMedCrossRefGoogle Scholar
  123. Tanner CM, Ross GW, Jewell SA, Hauser RA, Jankovic J, Factor SA, Bressman S, Deligtisch A, Marras C, Lyons KE, Bhudhikanok GS, Roucoux DF, Meng C, Abbott RD, Langston JW (2009) Occupation and risk of parkinsonism: a multicenter case–control study. Arch Neurol 66(9):1106–1113PubMedCrossRefGoogle Scholar
  124. Taylor MD, Roberts JR, Leonard SS, Shi X, Antonini JM (2003) Effects of welding fumes of differing composition and solubility on free radical production and acute lung injury and inflammation in rats. Toxicol Sci 75:181–191PubMedCrossRefGoogle Scholar
  125. Tjälve H, Henriksson J (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20(2–3):181–195PubMedGoogle Scholar
  126. Tjälve H, Henriksson J, Tallkvist J, Larsson BS, Lindquist NG (1996) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacol Toxicol 79(6):347–356PubMedCrossRefGoogle Scholar
  127. Tomas-Camardiel M, Herrera AJ, Venero JL, Cruz-Sanchez-Hidalgo M, Cano J, Machado A (2002) Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats. Mol Brain Res 103:116–129PubMedCrossRefGoogle Scholar
  128. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354PubMedCrossRefGoogle Scholar
  129. Wang XS, Ong WY, Connor JR (2001) A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J Neurocytol 30(4):353–360PubMedCrossRefGoogle Scholar
  130. Wennberg A, Iregren A, Struwe G, Cizinsky G, Hagman M, Johansson L (1991) Manganese exposure in steel smelters a health hazard to the nervous system. Scand J Work Environ Health 17(4):255–262PubMedGoogle Scholar
  131. Zhang S, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346PubMedCrossRefGoogle Scholar
  132. Zhang P, Wong TA, Lokuta KM, Turner DE, Vujisic K, Liu B (2009) Microglia enhance manganese chloride-induced dopaminergic neurodegeneration: role of free radical generation. Exp Neurol 217(1):219–230PubMedCrossRefGoogle Scholar
  133. Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J (2009) Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107(1):156–164PubMedCrossRefGoogle Scholar
  134. Zimmer AT, Biswas P (2001) Characterization of the aerosols resulting from arc welding processes. J Aerosol Sci 32:993–1008CrossRefGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Krishnan Sriram
    • 1
    Email author
  • Gary X. Lin
    • 1
  • Amy M. Jefferson
    • 1
  • Jenny R. Roberts
    • 1
  • Rebecca S. Chapman
    • 1
  • Bean T. Chen
    • 1
  • Joleen M. Soukup
    • 2
  • Andrew J. Ghio
    • 2
  • James M. Antonini
    • 1
  1. 1.Health Effects Laboratory DivisionNational Institute For Occupational Safety and HealthMorgantownUSA
  2. 2.National Health and Environmental Effects Research LaboratoryUnited States Environmental Protection AgencyResearch Triangle ParkUSA

Personalised recommendations