Archives of Toxicology

, Volume 84, Issue 7, pp 541–552 | Cite as

Investigations on the estrogenic activity of the metallohormone cadmium in the rat intestine

  • Nicola Höfer
  • Patrick Diel
  • Jürgen Wittsiepe
  • Michael Wilhelm
  • Felix M. Kluxen
  • Gisela H. Degen
Inorganic Compounds


Cadmium (Cd), a toxic heavy metal and an important environmental pollutant, is now also regarded as potential endocrine disruptor. Its estrogenic effects have been examined so far just in classical target tissues, e.g. uterus, and mostly upon intraperitoneal (i.p.) injection of CdCl2. Yet, estrogen receptors are also expressed in the gut, and food is the main source of cadmium intake in the general population. Therefore, possible estrogenic effects were now investigated in the intestine of ovariectomized Wistar rats after oral short- and long-term administration of CdCl2 (0.05–4 mg/kg bw on 3 days by gavage and 0.4–9 mg/kg bw for 4 weeks in drinking water) or upon i.p. injection (0.00005–2 mg CdCl2/kg bw), and compared to steroid estrogen (estradiol or ethinylestradiol) treated groups. Analysis of Cd in kidneys and small intestine by atomic absorption spectrometry showed dose-dependent increases in tissue levels with rather high Cd concentrations in the gut, both after oral and i.p. administration. Expression of metallothionein (MT1a), a typical metal response parameter, was clearly induced in kidney and small intestine of several CdCl2 treated groups, but also notably increased by steroid estrogens. Levels of estrogen-regulated genes, i.e. pS2/TFF1, vitamin D receptor (VDR), and estrogen receptor α and β (ER α/β) were studied as parameters of hormonal activity: The intestinal mRNA expression of pS2/TFF1 was significantly decreased in the estrogen reference groups, but also after single i.p. injection and oral long-term administration of CdCl2. In contrast, the mRNA and protein expression of the VDR were unaffected by long-term administration of Cd via drinking water. We detected expression of ERβ, but not ERα in the small intestine of OVX rats. ERβ mRNA and protein expression were significantly down-regulated by Cd, similar to the ethinylestradiol reference group. The mRNA expression and immunostaining of proliferating cell nuclear antigen (PCNA), as an index for cell proliferation, revealed decreases after long-term administration of Cd and ethinylestradiol. In summary, cadmium exposure was shown to modulate molecular and functional parameters of estrogenicity in the intestinal tract of OVX rats. As the intestine is known to express predominantly ERβ, and is an important site of interaction with dietary contaminants, it is indicated to further investigate specific molecular mechanisms of cadmium and estrogen receptor interactions in more detail.


Cadmium Endocrine disruption Estrogenic activity Route of exposure Small intestine 



Atomic absorption spectrometry


Body weight


Cadmium chloride






Estrogen receptor alpha/beta






(Provisional) Tolerable weekly intake


  1. Alonso-González C, González A, Mazarrasa O, Güezmes A, Sánchez-Mateos S, Martínez-Campa C, Cos S, Sánchez-Barceló EJ, Mediavilla MD (2007) Melatonin prevents the estrogenic effects of subchronic administration of cadmium on mice mammary glands. J Pineal Res 42:403–410CrossRefPubMedGoogle Scholar
  2. Bardin A, Boulle N, Lazennec G, Vignon F, Pujol P (2004) Loss of ERbeta expression as a common step in estrogen-dependent tumor progression. Endocr Relat Cancer 11(3):537–551CrossRefPubMedGoogle Scholar
  3. Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128(4):557–564PubMedGoogle Scholar
  4. Blazka ME, Shaikh ZA (1991) Sex differences in hepatic and renal cadmium accumulation and metallothionein induction. Role of estradiol. Biochem Pharmacol 41(5):775–780CrossRefPubMedGoogle Scholar
  5. Brown AM, Jeltsch JM, Roberts M, Chambon P (1984) Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci USA 81(20):6344–6348CrossRefPubMedGoogle Scholar
  6. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2009) Cadmium—a metallohormone? Toxicol Appl Pharmacol 238(3):266–271CrossRefPubMedGoogle Scholar
  7. Chan HM, Cherian MG (1992) Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology 72(3):281–290CrossRefPubMedGoogle Scholar
  8. Chan HM, Satoh M, Zalups RK, Cherian MG (1992) Exogenous metallothionein and renal toxicity of cadmium and mercury in rats. Toxicology 76(1):15–26CrossRefPubMedGoogle Scholar
  9. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162(1):156–159CrossRefPubMedGoogle Scholar
  10. Couse JF, Korach KS (2004) Estrogen receptor-alpha mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract. Toxicology 205(1–2):55–63CrossRefPubMedGoogle Scholar
  11. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647CrossRefPubMedGoogle Scholar
  12. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116(3):561–570CrossRefPubMedGoogle Scholar
  13. DFG (2004) Cadmium und seine anorganischen Verbindungen. Arbeitsmedizinisch-toxikologische Begründungen von MAK-Werten, 39. Lieferung. Wiley, WeinheimGoogle Scholar
  14. Diel P (2002) Tissue-specific estrogenic response and molecular mechanisms. Toxicol Lett 127(1–3):217–224CrossRefPubMedGoogle Scholar
  15. Diel P, Laudenbach-Leschowsky U, Friedel A, Voss A, Roussel J (2005) Pulsed estradiol exposure has a limited ability to induce uterine proliferation in ovariectomised female Wistar rats. Mol Cell Endocrinol 230(1–2):7–15CrossRefPubMedGoogle Scholar
  16. EFSA (2009) Scientific opinion of the panel on contaminants in the food chain on a request from the European commission on cadmium in food. EFSA J 980:1–139Google Scholar
  17. Elsenhans B, Kolb K, Schumann K, Forth W (1994) The longitudinal distribution of cadmium, zinc, copper, iron, and metallothionein in the small-intestinal mucosa of rats after administration of cadmium chloride. Biol Trace Elem Res 41(1–2):31–46CrossRefPubMedGoogle Scholar
  18. Enmark E, Gustafsson JA (1999) Oestrogen receptors—an overview. J Intern Med 246(2):133–138CrossRefPubMedGoogle Scholar
  19. Foley EF, Jazaeri AA, Shupnik MA, Jazaeri O, Rice LW (2000) Selective loss of estrogen receptor beta in malignant human colon. Cancer Res 60(2):245–248PubMedGoogle Scholar
  20. Fritzemeier KH, Hertrampf T, Diel P (2008) Alpha estratriene dervatives as ER-beta selective ligands for the prevention of intestinal cancer. European Patent No. 08160239.3-2123Google Scholar
  21. Ghoshal K, Jacob ST (2001) Regulation of metallothionein gene expression. Prog Nucleic Acid Res Mol Biol 66:357–384CrossRefPubMedGoogle Scholar
  22. Gilad LA, Schwartz B (2007) Association of estrogen receptor beta with plasma-membrane caveola components: implication in control of vitamin D receptor. J Mol Endocrinol 38(6):603–618CrossRefPubMedGoogle Scholar
  23. Gilad LA, Bresler T, Gnainsky J, Smirnoff P, Schwartz B (2005) Regulation of vitamin D receptor expression via estrogen-induced activation of the ERK 1/2 signaling pathway in colon and breast cancer cells. J Endocrinol 185(3):577–592CrossRefPubMedGoogle Scholar
  24. Gilad LA, Tirosh O, Schwartz B (2006) Phytoestrogens regulate transcription and translation of vitamin D receptor in colon cancer cells. J Endocrinol 191(2):387–398CrossRefPubMedGoogle Scholar
  25. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22CrossRefPubMedGoogle Scholar
  26. Grody WW, Schrader WT, O’Malley BW (1982) Activation, transformation, and subunit structure of steroid hormone receptors. Endocr Rev 3(2):141–163CrossRefPubMedGoogle Scholar
  27. Gustafsson JA (2000) Novel aspects of estrogen action. J Soc Gynecol Investig 7(1 Suppl):S8–S9CrossRefPubMedGoogle Scholar
  28. Gustafsson JA (2003) What pharmacologists can learn from recent advances in estrogen signalling. Trends Pharmacol Sci 24(9):479–485CrossRefPubMedGoogle Scholar
  29. Harnish DC (2006) Estrogen receptor ligands in the control of pathogenic inflammation. Curr Opin Investig Drugs 7(11):997–1001PubMedGoogle Scholar
  30. Harnish DC, Albert LM, Leathurby Y, Eckert AM, Ciarletta A, Kasaian M, Keith JC Jr (2004) Beneficial effects of estrogen treatment in the HLA-B27 transgenic rat model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 286(1):G118–G125CrossRefPubMedGoogle Scholar
  31. Harris HA (2007) Estrogen receptor-beta: recent lessons from in vivo studies. Mol Endocrinol 21(1):1–13CrossRefPubMedGoogle Scholar
  32. Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, Kharode YP, Marzolf J, Komm BS, Winneker RC, Frail DE, Henderson RA, Zhu Y, Keith JC Jr (2003) Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology 144(10):4241–4249CrossRefPubMedGoogle Scholar
  33. Höfer N, Diel P, Wittsiepe J, Wilhelm M, Degen GH (2009) Dose- and route-dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol Lett 191(2–3):123–131CrossRefPubMedGoogle Scholar
  34. IPCS INCHEM (2007) International Chemical Safety Card (ICSC) of Cadmium (PIM 089). The International Programme on Chemical Safety (IPCS)Google Scholar
  35. Jin T, Lu J, Nordberg M (1998) Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 19(4–5):529–535PubMedGoogle Scholar
  36. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, Clarke R, Sholler PF, Lirio AA, Foss C, Reiter R, Trock B, Paik S, Martin MB (2003) Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 9(8):1081–1084CrossRefPubMedGoogle Scholar
  37. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294CrossRefPubMedGoogle Scholar
  38. Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I, Sotiropoulou-Bonikou G, Papavassiliou AG (2003) Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer 39(9):1251–1258CrossRefPubMedGoogle Scholar
  39. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93(12):5925–5930CrossRefPubMedGoogle Scholar
  40. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870CrossRefPubMedGoogle Scholar
  41. Liel Y, Shany S, Smirnoff P, Schwartz B (1999) Estrogen increases 1,25-dihydroxyvitamin D receptors expression and bioresponse in the rat duodenal mucosa. Endocrinology 140(1):280–285CrossRefPubMedGoogle Scholar
  42. Liu Z, Yu X, Shaikh ZA (2008) Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium. Toxicol Appl Pharmacol 228(3):286–294CrossRefPubMedGoogle Scholar
  43. Marchbank T, Westley BR, May FE, Calnan DP, Playford RJ (1998) Dimerization of human pS2 (TFF1) plays a key role in its protective/healing effects. J Pathol 185(2):153–158CrossRefPubMedGoogle Scholar
  44. Martineti V, Picariello L, Tognarini I, Carbonell Sala S, Gozzini A, Azzari C, Mavilia C, Tanini A, Falchetti A, Fiorelli G, Tonelli F, Brandi ML (2005) ERbeta is a potent inhibitor of cell proliferation in the HCT8 human colon cancer cell line through regulation of cell cycle components. Endocr Relat Cancer 12(2):455–469CrossRefPubMedGoogle Scholar
  45. Murphy MS (1998) Growth factors and the gastrointestinal tract. Nutrition 14(10):771–774CrossRefPubMedGoogle Scholar
  46. Nie SN, Sun HC, Wu XH, Qian XM (2004) Cyclooxygenase 2, pS2, inducible nitric oxide synthase and transforming growth factor alpha in gastric adaptation to stress. World J Gastroenterol 10(23):3537–3541PubMedGoogle Scholar
  47. Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81(4):1535–1565PubMedGoogle Scholar
  48. Nordberg M (1998) Metallothioneins: historical review and state of knowledge. Talanta 46:243–254CrossRefPubMedGoogle Scholar
  49. Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238(3):192–200CrossRefPubMedGoogle Scholar
  50. Pettersson K, Gustafsson JA (2001) Role of estrogen receptor beta in estrogen action. Annu Rev Physiol 63:165–192CrossRefPubMedGoogle Scholar
  51. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefPubMedGoogle Scholar
  52. Pillet S, D’Elia M, Bernier J, Bouquegneau JM, Fournier M, Cyr DG (2006) Immunomodulatory effects of estradiol and cadmium in adult female rats. Toxicol Sci 92(2):423–432CrossRefPubMedGoogle Scholar
  53. Prins GS, Korach KS (2008) The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids 73(3):233–244CrossRefPubMedGoogle Scholar
  54. Ribieras S, Tomasetto C, Rio MC (1998) The pS2/TFF1 trefoil factor, from basic research to clinical applications. Biochim Biophys Acta 1378(1):F61–F77PubMedGoogle Scholar
  55. Rivera-Gonzalez R, Petersen DN, Tkalcevic G, Thompson DD, Brown TA (1998) Estrogen-induced genes in the uterus of ovariectomized rats and their regulation by droloxifene and tamoxifen. J Steroid Biochem Mol Biol 64(1–2):13–24CrossRefPubMedGoogle Scholar
  56. Sato M, Kondoh M (2002) Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med 196(1):9–22CrossRefPubMedGoogle Scholar
  57. Schwartz B, Smirnoff P, Shany S, Liel Y (2000) Estrogen controls expression and bioresponse of 1,25-dihydroxyvitamin D receptors in the rat colon. Mol Cell Biochem 203(1–2):87–93CrossRefPubMedGoogle Scholar
  58. Seibel J, Molzberger AF, Hertrampf T, Laudenbach-Leschowski U, Degen GH, Diel P (2008) In utero and postnatal exposure to a phytoestrogen-enriched diet increases parameters of acute inflammation in a rat model of TNBS-induced colitis. Arch Toxicol 82(12):941–950CrossRefPubMedGoogle Scholar
  59. Singh S, Poulsom R, Hanby AM, Rogers LA, Wright NA, Sheppard MC, Langman MJ (1998) Expression of oestrogen receptor and oestrogen-inducible genes pS2 and ERD5 in large bowel mucosa and cancer. J Pathol 184(2):153–160CrossRefPubMedGoogle Scholar
  60. Stoica A, Katzenellenbogen BS, Martin MB (2000) Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol Endocrinol 14(4):545–553CrossRefPubMedGoogle Scholar
  61. Takiguchi M, Yoshihara S (2006) New aspects of cadmium as endocrine disruptor. Environ Sci 13(2):107–116PubMedGoogle Scholar
  62. Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A, Panayappan L, Chatterjee M (2007) Metallothionein: an overview. World J Gastroenterol 13(7):993–996PubMedGoogle Scholar
  63. Wada-Hiraike O, Imamov O, Hiraike H, Hultenby K, Schwend T, Omoto Y, Warner M, Gustafsson JA (2006a) (2006a) Role of estrogen receptor beta in colonic epithelium. Proc Natl Acad Sci USA 103(8):2959–2964CrossRefPubMedGoogle Scholar
  64. Wada-Hiraike O, Warner M, Gustafsson JA (2006b) New developments in oestrogen signalling in colonic epithelium. Biochem Soc Trans Dec 34(Pt 6):1114–1116Google Scholar
  65. Young PC, Cleary RE, Ragan WD (1977) Effect of metal ions on the binding of 17beta-estradiol to human endometrial cytosol. Fertil Steril 28(4):459–463PubMedGoogle Scholar
  66. Zhang W, Yang J, Wang J, Xia P, Xu Y, Jia H, Chen Y (2007) Comparative studies on the increase of uterine weight and related mechanisms of cadmium and p-nonylphenol. Toxiocology 241(1–2):84–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nicola Höfer
    • 1
    • 2
  • Patrick Diel
    • 1
  • Jürgen Wittsiepe
    • 3
  • Michael Wilhelm
    • 3
  • Felix M. Kluxen
    • 1
    • 2
  • Gisela H. Degen
    • 2
  1. 1.Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports MedicineGerman Sports University CologneKölnGermany
  2. 2.IfADo—Leibniz Research Centre for Working Environment and Human Factors at the TU DortmundDortmundGermany
  3. 3.Department of Hygiene, Social- and Environmental MedicineRuhr-University BochumBochumGermany

Personalised recommendations