Advertisement

Archives of Toxicology

, Volume 83, Issue 10, pp 947–957 | Cite as

Occupational exposure to polycyclic aromatic hydrocarbons and DNA damage by industry: a nationwide study in Germany

  • Boleslaw Marczynski
  • Beate Pesch
  • Michael Wilhelm
  • Bernd Rossbach
  • Ralf Preuss
  • Jens-Uwe Hahn
  • Sylvia Rabstein
  • Monika Raulf-Heimsoth
  • Albrecht Seidel
  • Hans-Peter Rihs
  • Ansgar Adams
  • Michael Scherenberg
  • Anja Erkes
  • Beate Engelhardt
  • Kurt Straif
  • Heiko Udo KäfferleinEmail author
  • Jürgen Angerer
  • Thomas Brüning
Genotoxicity and Carcinogenicity

Abstract

Exposure to polycyclic aromatic hydrocarbons (PAH) and DNA damage were analyzed in coke oven (n = 37), refractory (n = 96), graphite electrode (n = 26), and converter workers (n = 12), whereas construction workers (n = 48) served as referents. PAH exposure was assessed by personal air sampling during shift and biological monitoring in urine post shift (1-hydroxypyrene, 1-OHP and 1-, 2 + 9-, 3-, 4-hydroxyphenanthrenes, ΣOHPHE). DNA damage was measured by 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and DNA strand breaks in blood post shift. Median 1-OHP and ΣOHPHE were highest in converter workers (13.5 and 37.2 μg/g crea). The industrial setting contributed to the metabolite concentrations rather than the air-borne concentration alone. Other routes of uptake, probably dermal, influenced associations between air-borne concentrations and levels of PAH metabolites in urine making biomonitoring results preferred parameters to assess exposure to PAH. DNA damage in terms of 8-oxo-dGuo and DNA strand breaks was higher in exposed workers compared to referents ranking highest for graphite-electrode production. The type of industry contributed to genotoxic DNA damage and DNA damage was not unequivocally associated to PAH on the individual level most likely due to potential contributions of co-exposures.

Keywords

Polycyclic aromatic hydrocarbons Occupational exposure DNA damage Biological monitoring PAH industries 

Notes

Acknowledgments

We would like to thank all workers and companies for their help and support. Additional thanks are due to Dr. Holger M. Koch, Dr. Sabine Plöttner, and Dr. Rosemarie Marchan for internal review and editorial comments prior submission. This work was core-supported by the German Social Accident Insurance (DGUV).

References

  1. Angerer J, Mannschreck C, Gündel J (1997) Occupational exposure to polycyclic aromatic hydrocarbons in a graphite-electrode producing plant: biological monitoring of 1-hydroxypyrene and monohydroxylated metabolites of phenanthrene. Int Arch Occup Environ Health 69:323–331PubMedCrossRefGoogle Scholar
  2. Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8:444–472PubMedCrossRefGoogle Scholar
  3. Boström CE, Gerde P, Hanberg A et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(Suppl 3):451–488PubMedGoogle Scholar
  4. Buchet JP, Gennart JP, Mercado-Calderon F et al (1992) Evaluation of exposure to polycyclic aromatic hydrocarbons in a coke production and a graphite electrode manufacturing plant: assessment of urinary excretion of 1-hydroxypyrene as a biological indicator of exposure. Br J Ind Med 49:761–768PubMedGoogle Scholar
  5. Burczynski ME, Lin HK, Penning TM (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAH), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 59:607–614PubMedGoogle Scholar
  6. Burlinson B, Tice RR, Speit G et al (2007) In vivo comet assay workgroup, part of the fourth international workgroup on genotoxicity testing. Fourth international workgroup on genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res 627:31–35PubMedGoogle Scholar
  7. Chen ML, Mao IF, Wu MT et al (1999) Assessment of coke oven emissions exposure among coking workers. Am Ind Hyg Assoc J 60:105–110PubMedGoogle Scholar
  8. Courter LA, Musafia-Jeknic T, Fischer K et al (2007) Urban dust particulate matter alters PAH-induced carcinogenesis by inhibition of CYP1A1 and CYP1B1. Toxicol Sci 95:63–73PubMedCrossRefGoogle Scholar
  9. dell’Omo M, Muzi G, Marchionna G et al (1998) Preventive measures reduce exposure to polycyclic aromatic hydrocarbons at a graphite electrode plant. Occup Environ Med 55:401–406PubMedCrossRefGoogle Scholar
  10. Dipple A, Khan QA, Page JE et al (1999) DNA reactions, mutagenic action and stealth properties of polycyclic aromatic hydrocarbon carcinogens. Int J Oncol 14:103–111PubMedGoogle Scholar
  11. European Standards Committee on Oxidative DNA Damage (ESCODD) (2003) Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med 34:1089–1099CrossRefGoogle Scholar
  12. Floyd RA, Watson JJ, Wong PK et al (1986) Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun 1:163–172PubMedCrossRefGoogle Scholar
  13. Grimmer G, Dettbarn G, Jacob J (1993) Biomonitoring of polycyclic aromatic hydrocarbons in highly exposed coke plant workers by measurement of urinary phenanthrene and pyrene metabolites (phenols and dihydrodiols). Int Arch Occup Environ Health 65:189–199PubMedCrossRefGoogle Scholar
  14. Gündel J, Schaller KH, Angerer J (2000) Occupational exposure to polycyclic aromatic hydrocarbons in a fireproof stone producing plant: biological monitoring of 1-hydroxypyrene, 1-, 2-, 3- and 4-hydroxyphenanthrene, 3-hydroxybenz(a)anthracene and 3-hydroxybenzo(a)pyrene. Int Arch Occup Environ Health 73:270–274PubMedCrossRefGoogle Scholar
  15. Hecht SS (2002) Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer. Carcinogenesis 23:907–922PubMedCrossRefGoogle Scholar
  16. Human Biomonitoring Commission (HBM) (2005) 1-Hydroxypyrene in urine as an indicator of internal exposure to polycyclic aromatic hydrocarbons (PAH)—reference level of 1-hydroxypyrene in urine (in German). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 48:1194–1206CrossRefGoogle Scholar
  17. IARC (1984) Industrial exposures in aluminium production, coal gasification, coal production, and iron and steel founding. IARC Monogr Eval Carcinog Risks Hum 34Google Scholar
  18. IARC (2009) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92 (in press)Google Scholar
  19. Jongeneelen FJ (1997) Methods for routine biological monitoring of carcinogenic PAH-mixtures. Sci Total Environ 199:141–149PubMedCrossRefGoogle Scholar
  20. Klaunig JE, Xu Y, Isenberg JS et al (1998) The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 106(Suppl 1):289–295PubMedCrossRefGoogle Scholar
  21. Leng S, Cheng J, Pan Z et al (2004) Associations between XRCC1 and ERCC2 polymorphisms and DNA damage in peripheral blood lymphocyte among coke oven workers. Biomarkers 9:395–406PubMedCrossRefGoogle Scholar
  22. Leng S, Cheng J, Zhang L et al (2005) The association of XRCC1 haplotypes and chromosomal damage levels in peripheral blood lymphocyte among coke-oven workers. Cancer Epidemiol Biomarkers Prev 14:1295–1301PubMedCrossRefGoogle Scholar
  23. Lin YC, Pan CH, Chen CJ et al (2006) Associations between exposure to polycyclic aromatic hydrocarbons and temporal change of urinary 1-hydroxypyrene levels in Taiwanese coke-oven workers. J Occup Environ Med 48:930–936PubMedCrossRefGoogle Scholar
  24. Lintelmann J, Angerer J (1999) PAH metabolites. In: Angerer J, Schaller KH (eds) Analysis of hazardous substances in biological materials, vol 6. Wiley-VCH, Weinheim, pp 163–187Google Scholar
  25. Lu PL, Chen ML, Mao IF (2002) Urinary 1-hydroxypyrene levels in workers exposed to coke oven emissions at various locations in a coke oven plant. Arch Environ Health 57:255–261PubMedCrossRefGoogle Scholar
  26. Luch A (2005) Nature and nurture—lessons from chemical carcinogenesis. Nat Rev Cancer 5:113–125PubMedCrossRefGoogle Scholar
  27. Marczynski B, Preuss R, Mensing T et al (2005) Genotoxic risk assessment in white blood cells of occupationally exposed workers before and after alteration of the polycyclic aromatic hydrocarbon (PAH) profile in the production material: comparison with PAH air and urinary metabolite levels. Int Arch Occup Environ Health 78:97–108PubMedCrossRefGoogle Scholar
  28. Marczynski B, Raulf-Heimsoth M, Preuss R et al (2006) Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen. Cancer Epidemiol Biomarkers Prev 15:645–651PubMedCrossRefGoogle Scholar
  29. Merlo DF, Garattini S, Gelatti U et al (2004) A mortality cohort study among workers in a graphite electrode production plant in Italy. Occup Environ Med 61:e9PubMedCrossRefGoogle Scholar
  30. Moretti M, dell’Omo M, Villarini M et al (2007) Primary DNA damage and genetic polymorphisms for CYP1A1, EPHX and GSTM1 in workers at a graphite electrode manufacturing plant. BMC Public Health 7:270–279PubMedCrossRefGoogle Scholar
  31. NIOSH (1994) Polynuclear aromatic hydrocarbons by HPLC. In: Casinelli ME, O’Connor PE (eds) NIOSH manual of analytical methods, 4th edn. National Institute for Occupational Safety and Health, WashingtonGoogle Scholar
  32. Östling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298PubMedCrossRefGoogle Scholar
  33. Park JH, Gelhaus S, Vedantam S et al (2008a) The pattern of p53 mutations caused by PAH o-quinones is driven by 8-oxo-dGuo formation while the spectrum of mutations is determined by biological selection for dominance. Chem Res Toxicol 21:1039–1049PubMedCrossRefGoogle Scholar
  34. Park JH, Mangal D, Tacka KA et al (2008b) Evidence for the aldo-keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells. Proc Natl Acad Sci USA 105:6846–6851PubMedCrossRefGoogle Scholar
  35. Pesch B, Kappler M, Straif K et al (2007) Dose-response modeling of occupational exposure to polycyclic aromatic hydrocarbons with biomarkers of exposure and effect. Cancer Epidemiol Biomarkers Prev 16:1863–1873PubMedCrossRefGoogle Scholar
  36. Pouget JP, Ravanat JL, Douki T et al (1999) Measurement of DNA base damage in cells exposed to low doses of gamma-radiation: comparison between the HPLC-EC and comet assays. Int J Radiat Biol 75:51–58PubMedCrossRefGoogle Scholar
  37. Qiu L, Leng S, Wang Z et al (2007) Path analysis of biomarkers of exposure and early biological effects among coke-oven workers exposed to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev 16:1193–1199PubMedCrossRefGoogle Scholar
  38. Rihs HP, Pesch B, Kappler M et al (2005) Occupational exposure to polycyclic aromatic hydrocarbons in German industries: association between exogenous exposure and urinary metabolites and its modulation by enzyme polymorphisms. Toxicol Lett 157:241–255PubMedCrossRefGoogle Scholar
  39. Schaller KH, Angerer J, Drexler H (2002) Quality assurance of biological monitoring in occupational and environmental medicine. J Chromatogr B Analyt Technol Biomed Life Sci 778:403–417PubMedCrossRefGoogle Scholar
  40. Scherer G, Meger-Kossien I, Angerer J (2001) Cotinine. In: Angerer J, Schaller KH et al (eds) Analysis of hazardous substances in biological materials, vol 7. Wiley-VCH, Weinheim, pp 171–189Google Scholar
  41. Seidel A, Spickenheuer A, Straif K et al (2008) New biomarkers of occupational exposure to polycyclic aromatic hydrocarbons. J Toxicol Environ Health A 71:734–745PubMedCrossRefGoogle Scholar
  42. Seike K, Murata M, Hirakawa K et al (2004) Oxidative DNA damage induced by benz[a]anthracene dihydrodiols in the presence of dihydrodiol dehydrogenase. Chem Res Toxicol 17:1445–1451 2004PubMedCrossRefGoogle Scholar
  43. Serdar B, Waidyanatha S, Zheng Y et al (2003) Simultaneous determination of urinary 1- and 2-naphthols, 3- and 9-phenanthrols, and 1-pyrenol in coke oven workers. Biomarkers 8:93–109PubMedCrossRefGoogle Scholar
  44. Singh NP, McCoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191PubMedCrossRefGoogle Scholar
  45. Straif K, Baan R, Grosse Y et al (2005) Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncol 6:931–932PubMedCrossRefGoogle Scholar
  46. Strunk P, Ortlepp K, Heinz H et al (2002) Ambient and biological monitoring of coke plant workers—determination of exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 75:354–358PubMedCrossRefGoogle Scholar
  47. Taussky HH (1954) A micro-colometric determination of creatinine in urine by the Jaffé reaction. J Biol Chem 208:853–861PubMedGoogle Scholar
  48. Thielen S, Baum M, Hoffmann M et al (2006) Genotoxicity of glycidamide in comparison to (+/−)-anti-benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide and alpha-acetoxy-N-nitroso-diethanolamine in human blood and in mammalian V79-cells. Mol Nutr Food Res 50:430–436PubMedCrossRefGoogle Scholar
  49. Van Delft JH, Steenwinkel MS, van Asten JG et al (2001) Biological monitoring the exposure to polycyclic aromatic hydrocarbons of coke oven workers in relation to smoking and genetic polymorphisms for GSTM1 and GSTT1. Ann Occup Hyg 45:395–408PubMedGoogle Scholar
  50. Wu MT, Simpson CD, Christiani DC et al (2002) Relationship of exposure to coke-oven emissions and urinary metabolites of benzo(a)pyrene and pyrene in coke-oven workers. Cancer Epidemiol Biomarkers Prev 11:311–314PubMedGoogle Scholar
  51. Wu MT, Pan CH, Huang YL et al (2003) Urinary excretion of 8-hydroxy-2-deoxyguanosine and 1-hydroxypyrene in coke-oven workers. Environ Mol Mutagen 42:98–105PubMedCrossRefGoogle Scholar
  52. Yang X, Zheng J, Bai Y et al (2007) Using lymphocyte and plasma Hsp70 as biomarkers for assessing coke oven exposure among steel workers. Environ Health Perspect 115:1573–1577PubMedCrossRefGoogle Scholar
  53. Zhang J, Ichiba M, Feng Y et al (2000) Aromatic DNA adducts in coke-oven workers, in relation to exposure, lifestyle and genetic polymorphism of metabolic enzymes. Int Arch Occup Environ Health 73:127–135PubMedCrossRefGoogle Scholar
  54. Zhang J, Ichiba M, Hanaoka T et al (2003) Leukocyte 8-hydroxydeoxyguanosine and aromatic DNA adduct in coke-oven workers with polycyclic aromatic hydrocarbon exposure. Int Arch Occup Environ Health 76:499–504PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Boleslaw Marczynski
    • 1
  • Beate Pesch
    • 1
  • Michael Wilhelm
    • 2
  • Bernd Rossbach
    • 3
  • Ralf Preuss
    • 4
  • Jens-Uwe Hahn
    • 5
  • Sylvia Rabstein
    • 1
  • Monika Raulf-Heimsoth
    • 1
  • Albrecht Seidel
    • 6
  • Hans-Peter Rihs
    • 1
  • Ansgar Adams
    • 7
  • Michael Scherenberg
    • 8
  • Anja Erkes
    • 1
  • Beate Engelhardt
    • 1
  • Kurt Straif
    • 9
  • Heiko Udo Käfferlein
    • 1
    Email author
  • Jürgen Angerer
    • 1
  • Thomas Brüning
    • 1
  1. 1.BGFA—Research Institute of Occupational Medicine, German Social Accident Insurance, Ruhr-University BochumBochumGermany
  2. 2.Institute of Hygiene, Social and Environmental MedicineRuhr-University BochumBochumGermany
  3. 3.Institute of Occupational, Social and Environmental MedicineJohannes Gutenberg-University MainzMainzGermany
  4. 4.Institute and Outpatient Clinic of Occupational, Social- and Environmental MedicineFriedrich-Alexander-University Erlangen/NürnbergErlangenGermany
  5. 5.BGIA—Institute for Occupational Health and Safety, German Social Accident InsuranceSankt AugustinGermany
  6. 6.Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-FoundationGrosshansdorfGermany
  7. 7.BAD Health Prevention and Technical Safety GmbHKoblenzGermany
  8. 8.German Social Accident Insurance of the Construction IndustryOccupational Medical Center OberhausenOberhausenGermany
  9. 9.International Agency for Research on Cancer (IARC), World Health OrganisationLyon Cedex 08France

Personalised recommendations