Archives of Toxicology

, Volume 83, Issue 5, pp 407–416

Telomere maintenance: all’s well that ends well

Review Article


The nucleoprotein structures termed telomeres serve to prevent the mis-identification of eukaryotic chromosome ends as sites of DNA damage, but are also among the genomic regions that pose the most problems during DNA replication. Here, we summarize some of the apparent difficulties encountered by the DNA replication machinery when it approaches the chromosome ends. Eukaryotic cells have evolved diverse mechanisms to overcome these problems, underlining the importance of telomere maintenance for a number of aspects of chromosome function. Of particular interest in this respect are the ways in which telomere-binding proteins and components of the DNA damage response machinery may facilitate replication fork progression through telomeres.


Telomeres DNA replication Telomere-binding proteins DNA damage Recombination 


  1. Amiard S, Doudeau M, Pinte S, Poulet A, Lenain C, Faivre-Moskalenko C, Angelov D, Hug N, Vindigni A, Bouvet P et al (2007) A topological mechanism for TRF2-enhanced strand invasion. Nat Struct Mol Biol 14:147–154. doi:10.1038/nsmb1192 PubMedCrossRefGoogle Scholar
  2. Bae NS, Baumann P (2007) A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell 26:323–334. doi:10.1016/j.molcel.2007.03.023 PubMedCrossRefGoogle Scholar
  3. Bailey SM, Brenneman MA, Goodwin EH (2004) Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res 32:3743–3751. doi:10.1093/nar/gkh691 PubMedCrossRefGoogle Scholar
  4. Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O’Neil NJ, Petalcorin MI, Martin JS, Collis SJ, Cantor SB, Auclair M et al (2008) RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135:261–271. doi:10.1016/j.cell.2008.08.016 PubMedCrossRefGoogle Scholar
  5. Bichara M, Wagner J, Lambert IB (2006) Mechanisms of tandem repeat instability in bacteria. Mutat Res 598:144–163. doi:10.1016/j.mrfmmm.2006.01.020 PubMedGoogle Scholar
  6. Chai W, Du Q, Shay JW, Wright WE (2006) Human telomeres have different overhang sizes at leading versus lagging strands. Mol Cell 21:427–435. doi:10.1016/j.molcel.2005.12.004 PubMedCrossRefGoogle Scholar
  7. Cohen H, Sinclair DA (2001) Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc Natl Acad Sci USA 98:3174–3179. doi:10.1073/pnas.061579598 PubMedCrossRefGoogle Scholar
  8. Colgin LM, Baran K, Baumann P, Cech TR, Reddel RR (2003) Human POT1 facilitates telomere elongation by telomerase. Curr Biol 13:942–946. doi:10.1016/S0960-9822(03)00339-7 PubMedCrossRefGoogle Scholar
  9. Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1:80–84. doi:10.1093/embo-reports/kvd004 PubMedCrossRefGoogle Scholar
  10. Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ (2007) gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One 2:e1057. doi:10.1371/journal.pone.0001057 PubMedCrossRefGoogle Scholar
  11. Crabbe L, Verdun RE, Haggblom CI, Karlseder J (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306:1951–1953. doi:10.1126/science.1103619 PubMedCrossRefGoogle Scholar
  12. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110. doi:10.1101/gad.1346005 PubMedCrossRefGoogle Scholar
  13. Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M, Pourvali R, Poon S, Vulto I, Chavez E et al (2004) Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117:873–886. doi:10.1016/j.cell.2004.05.026 PubMedCrossRefGoogle Scholar
  14. Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, Fangman WL, Raghuraman MK, Brewer BJ (2006) Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol 8:148–155. doi:10.1038/ncb1358 PubMedCrossRefGoogle Scholar
  15. Fouche N, Ozgur S, Roy D, Griffith JD (2006) Replication fork regression in repetitive DNAs. Nucleic Acids Res 34:6044–6050. doi:10.1093/nar/gkl757 PubMedCrossRefGoogle Scholar
  16. Frank CJ, Hyde M, Greider CW (2006) Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol Cell 24:423–432. doi:10.1016/j.molcel.2006.10.020 PubMedCrossRefGoogle Scholar
  17. Fry M, Loeb LA (1999) Human werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J Biol Chem 274:12797–12802. doi:10.1074/jbc.274.18.12797 PubMedCrossRefGoogle Scholar
  18. Gilson E, Geli V (2007) How telomeres are replicated. Nat Rev Mol Cell Biol 8:825–838. doi:10.1038/nrm2259 PubMedCrossRefGoogle Scholar
  19. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424. doi:10.1038/ncb1386 PubMedCrossRefGoogle Scholar
  20. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413. doi:10.1016/0092-8674(85)90170-9 PubMedCrossRefGoogle Scholar
  21. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514. doi:10.1016/S0092-8674(00)80760-6 PubMedCrossRefGoogle Scholar
  22. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745. doi:10.1016/j.molcel.2007.11.015 PubMedCrossRefGoogle Scholar
  23. Hayashi M, Katou Y, Itoh T, Tazumi A, Yamada Y, Takahashi T, Nakagawa T, Shirahige K, Masukata H (2007) Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 26:1327–1339. doi:10.1038/sj.emboj.7601585 PubMedCrossRefGoogle Scholar
  24. Hickson ID (2003) RecQ helicases: caretakers of the genome. Nat Rev Cancer 3:169–178. doi:10.1038/nrc1012 PubMedCrossRefGoogle Scholar
  25. Huang P, Pryde FE, Lester D, Maddison RL, Borts RH, Hickson ID, Louis EJ (2001) SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 11:125–129. doi:10.1016/S0960-9822(01)00021-5 PubMedCrossRefGoogle Scholar
  26. Ivessa AS, Zhou JQ, Zakian VA (2000) The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100:479–489. doi:10.1016/S0092-8674(00)80683-2 PubMedCrossRefGoogle Scholar
  27. Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA (2002) Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 16:1383–1396. doi:10.1101/gad.982902 PubMedCrossRefGoogle Scholar
  28. Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L (2001) The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 20:905–913. doi:10.1093/emboj/20.4.905 PubMedCrossRefGoogle Scholar
  29. Kanoh J, Sadaie M, Urano T, Ishikawa F (2005) Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15:1808–1819. doi:10.1016/j.cub.2005.09.041 PubMedCrossRefGoogle Scholar
  30. Karow JK, Constantinou A, Li JL, West SC, Hickson ID (2000) The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA 97:6504–6508. doi:10.1073/pnas.100448097 PubMedCrossRefGoogle Scholar
  31. Kelleher C, Kurth I, Lingner J (2005) Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol Cell Biol 25:808–818. doi:10.1128/MCB.25.2.808-818.2005 PubMedCrossRefGoogle Scholar
  32. Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE (2007) Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol 178:209–218. doi:10.1083/jcb.200612031 PubMedCrossRefGoogle Scholar
  33. Lambert S, Froget B, Carr AM (2007) Arrested replication fork processing: interplay between checkpoints and recombination. DNA Repair (Amst) 6:1042–1061. doi:10.1016/j.dnarep.2007.02.024 CrossRefGoogle Scholar
  34. Larrivee M, LeBel C, Wellinger RJ (2004) The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18:1391–1396. doi:10.1101/gad.1199404 PubMedCrossRefGoogle Scholar
  35. Laud PR, Multani AS, Bailey SM, Wu L, Ma J, Kingsley C, Lebel M, Pathak S, DePinho RA, Chang S (2005) Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev 19:2560–2570. doi:10.1101/gad.1321305 PubMedCrossRefGoogle Scholar
  36. Lee JY, Kozak M, Martin JD, Pennock E, Johnson FB (2007) Evidence that a RecQ helicase slows senescence by resolving recombining telomeres. PLoS Biol 5:e160. doi:10.1371/journal.pbio.0050160 PubMedCrossRefGoogle Scholar
  37. Li B, Lustig AJ (1996) A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev 10:1310–1326. doi:10.1101/gad.10.11.1310 PubMedCrossRefGoogle Scholar
  38. Lillard-Wetherell K, Machwe A, Langland GT, Combs KA, Behbehani GK, Schonberg SA, German J, Turchi JJ, Orren DK, Groden J (2004) Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum Mol Genet 13:1919–1932. doi:10.1093/hmg/ddh193 PubMedCrossRefGoogle Scholar
  39. Longhese MP (2008) DNA damage response at functional and dysfunctional telomeres. Genes Dev 22:125–140. doi:10.1101/gad.1626908 PubMedCrossRefGoogle Scholar
  40. Machwe A, Xiao L, Orren DK (2004) TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23:149–156. doi:10.1038/sj.onc.1206906 PubMedCrossRefGoogle Scholar
  41. Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666. doi:10.1016/S0092-8674(00)81908-X PubMedCrossRefGoogle Scholar
  42. Makovets S, Herskowitz I, Blackburn EH (2004) Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions. Mol Cell Biol 24:4019–4031. doi:10.1128/MCB.24.9.4019-4031.2004 PubMedCrossRefGoogle Scholar
  43. Marcand S, Gilson E, Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science 275:986–990. doi:10.1126/science.275.5302.986 PubMedCrossRefGoogle Scholar
  44. Maser RS, DePinho RA (2002) Connecting chromosomes, crisis, and cancer. Science 297:565–569. doi:10.1126/science.297.5581.565 PubMedCrossRefGoogle Scholar
  45. Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Mol Cell Biol 3:91–102. doi:10.1038/nrg727 CrossRefGoogle Scholar
  46. Mickle KL, Ramanathan S, Rosebrock A, Oliva A, Chaudari A, Yompakdee C, Scott D, Leatherwood J, Huberman JA (2007) Checkpoint independence of most DNA replication origins in fission yeast. BMC Mol Biol 8:112. doi:10.1186/1471-2199-8-112 PubMedCrossRefGoogle Scholar
  47. Miller KM, Rog O, Cooper JP (2006) Semi-conservative DNA replication through telomeres requires Taz1. Nature 440:824–828. doi:10.1038/nature04638 PubMedCrossRefGoogle Scholar
  48. Miyoshi T, Kanoh J, Saito M, Ishikawa F (2008) Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320:1341–1344. doi:10.1126/science.1154819 PubMedCrossRefGoogle Scholar
  49. Mohaghegh P, Karow JK, Brosh RM Jr, Bohr VA Jr, Hickson ID (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29:2843–2849. doi:10.1093/nar/29.13.2843 PubMedCrossRefGoogle Scholar
  50. Neecke H, Lucchini G, Longhese MP (1999) Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast. EMBO J 18:4485–4497. doi:10.1093/emboj/18.16.4485 PubMedCrossRefGoogle Scholar
  51. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119. doi:10.1074/jbc.M205396200 PubMedCrossRefGoogle Scholar
  52. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, May A, Seidman MM, Bohr VA (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14:763–774. doi:10.1016/j.molcel.2004.05.023 PubMedCrossRefGoogle Scholar
  53. Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, Bohr VA (2005) POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 280:32069–32080. doi:10.1074/jbc.M505211200 PubMedCrossRefGoogle Scholar
  54. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12:847–854. doi:10.1038/nsmb982 PubMedCrossRefGoogle Scholar
  55. Rudd MK, Friedman C, Parghi SS, Linardopoulou EV, Hsu L, Trask BJ (2007) Elevated rates of sister chromatid exchange at chromosome ends. PLoS Genet 3:e32. doi:10.1371/journal.pgen.0030032 PubMedCrossRefGoogle Scholar
  56. Sadaie M, Naito T, Ishikawa F (2003) Stable inheritance of telomere chromatin structure and function in the absence of telomeric repeats. Genes Dev 17:2271–2282. doi:10.1101/gad.1112103 PubMedCrossRefGoogle Scholar
  57. Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618. doi:10.1038/27001 PubMedCrossRefGoogle Scholar
  58. Schawalder J, Paric E, Neff NF (2003) Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase. BMC Cell Biol 4:15. doi:10.1186/1471-2121-4-15 PubMedCrossRefGoogle Scholar
  59. Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20:5532–5540. doi:10.1093/emboj/20.19.5532 PubMedCrossRefGoogle Scholar
  60. Stavropoulos DJ, Bradshaw PS, Li X, Pasic I, Truong K, Ikura M, Ungrin M, Meyn MS (2002) The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum Mol Genet 11:3135–3144. doi:10.1093/hmg/11.25.3135 PubMedCrossRefGoogle Scholar
  61. Sun H, Karow JK, Hickson ID, Maizels N (1998) The Bloom’s syndrome helicase unwinds G4 DNA. J Biol Chem 273:27587–27592. doi:10.1074/jbc.273.42.27587 PubMedCrossRefGoogle Scholar
  62. Sun H, Bennett RJ, Maizels N (1999) The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res 27:1978–1984. doi:10.1093/nar/27.9.1978 PubMedCrossRefGoogle Scholar
  63. Sundquist WI, Klug A (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342:825–829. doi:10.1038/342825a0 PubMedCrossRefGoogle Scholar
  64. Verdun RE, Crabbe L, Haggblom C, Karlseder J (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20:551–561. doi:10.1016/j.molcel.2005.09.024 PubMedCrossRefGoogle Scholar
  65. Vodenicharov MD, Wellinger RJ (2006) DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol Cell 24:127–137. doi:10.1016/j.molcel.2006.07.035 PubMedCrossRefGoogle Scholar
  66. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282. doi:10.1016/0969-2126(93)90015-9 PubMedCrossRefGoogle Scholar
  67. Wang RC, Smogorzewska A, de Lange T (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119:355–368. doi:10.1016/j.cell.2004.10.011 PubMedCrossRefGoogle Scholar
  68. Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR, Lei M (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–510. doi:10.1038/nature05454 PubMedCrossRefGoogle Scholar
  69. Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59:871–880. doi:10.1016/0092-8674(89)90610-7 PubMedCrossRefGoogle Scholar
  70. Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874. doi:10.1038/nature02253 PubMedCrossRefGoogle Scholar
  71. Xin H, Liu D, Wan M, Safari A, Kim H, Sun W, O’Connor MS, Songyang Z (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445:559–562. doi:10.1038/nature05469 PubMedCrossRefGoogle Scholar
  72. Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350:718–720. doi:10.1038/350718a0 PubMedCrossRefGoogle Scholar
  73. Zaug AJ, Podell ER, Cech TR (2005) Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci USA 102:10864–10869. doi:10.1073/pnas.0504744102 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK

Personalised recommendations