Archives of Toxicology

, Volume 83, Issue 5, pp 493–502 | Cite as

Hypothermic storage of isolated human hepatocytes: a comparison between University of Wisconsin solution and a hypothermosol platform

  • Alina OstrowskaEmail author
  • Kenan Gu
  • Donald C. Bode
  • Robert G. Van Buskirk
Organ Toxicity and Mechanisms


Until now little is known about the functional integrity of human hepatocytes after hypothermic storage. In order to address this limitation, we evaluated several commercially available hypothermic preservation media for their abilities to protect freshly isolated hepatocytes during prolonged cold storage. Human hepatocytes were isolated from non-transplantable/rejected donor livers and resuspended in ice-cold University of Wisconsin solution (UW), HypoThermosol-Base (HTS-Base), or HypoThermosol-FRS (HTS-FRS) with or without the addition of fetal bovine serum. Cells were stored at 4°C for 24–72 h, and evaluated for hepatocyte viability (trypan blue exclusion, or labeling with fluorochromes), cell attachment, and function. The energy status of hepatocytes was evaluated by measurement of intracellular adenosine 5′-triphosphate. To determine whether the test cells expressed metabolic functions of freshly isolated cells, the activities of major phase I (cytochromes P450, FMO) and phase II (UGT, ST) drug-metabolizing enzymes were examined. Although hepatocytes are shown to be satisfactory after 24 h storage in all of the tested solutions, the cell viability, energy status, and xenobiotic metabolism following cold preservation in HTS-FRS was consistently and, in some cases, markedly higher when compared with other systems. The same metabolites for each of the tested substrates were detected in all groups of cells. Moreover, the use of HTS-FRS eliminates the need for serum in preservation solutions. HTS-FRS represents an improved solution compared to HTS-Base and UW for extending the shipping/storage time of human hepatocytes.


Human hepatocytes Hypothermia HypoThermosol UW Viability 


  1. Abrahamse SL, d Heimel P, Hartman RJ, Chamuleau RA, van Gulik TM (2003) Induction of necrosis and DNA fragmentation during hypothermic preservation of hepatocytes in UW, HTK, and Celsior solutions. Cell Transplant 12:59–68. doi: 10.3727/000000003783985160 PubMedCrossRefGoogle Scholar
  2. Adams RM, Wang M, Crane AM, Brown B, Darlington GJ, Ledley FD (1995) Effective cryopreservation and long-term storage of primary human hepatocytes with recovery of viability, differentiation, and replicative potential. Cell Transplant 4:579–586. doi: 10.1016/0963-6897(95)02001-2 PubMedCrossRefGoogle Scholar
  3. Almada L, Bellarosa C, Giraudi P, Mamprin M, Mediavilla M, Guibert E, Tiribelli C, Rodriguez J (2005) The urea cycle activity and its gene expression in rat hepatocytes are not affected by cold storage in University of Wisconsin solution. Ann Hepatol 4:224–227PubMedGoogle Scholar
  4. Almada L, Bellarosa C, Giraudi P, Mamprin M, Mediavilla M, Guibert E, Tiribelli C, Rodriguez J (2006) Gene expression and activity of urea cycle enzymes of rat hepatocytes cold stored up to 120 h in University of Wisconsin solution. Cryobiology 52:393–400. doi: 10.1016/j.cryobiol.2006.02.001 PubMedCrossRefGoogle Scholar
  5. Altman SA, Randers L, Rao G (1993) Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations. Biotechnol Prog 9:671–674. doi: 10.1021/bp00024a017 PubMedCrossRefGoogle Scholar
  6. Arikura J, Kobayashi N, Okitsu T, Noguchi H, Totsugawa T, Watanabe T, Matsumura T, Maruyama M, Kosaka Y, Tanaka N, Onodera K, Kasai S (2002) UW solution: a promising tool for cryopreservation of primarily isolated rat cells. J Hepatobiliary Pancreat Surg 9:742–749. doi: 10.1007/s005340200103 PubMedCrossRefGoogle Scholar
  7. Baust JM, Van Buskirk RG, Baust JG (2000) Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 36:262–270. doi: 10.1290/1071-2690(2000)036<0262:CVIFIO>2.0.CO;2 PubMedCrossRefGoogle Scholar
  8. Baust JM, Van Buskirk RG, Baust JG (2002a) Modulation of the cryopreservation cap: elevated survival with reduced dimethyl sulfoxide concentration. Cryobiology 45:97–108. doi: 10.1016/S0011-2240(02)00100-1 PubMedCrossRefGoogle Scholar
  9. Baust JM, Van Buskirk RG, Baust JG (2002b) Gene activation of the apoptotic caspase cascade following cryogenic storage. Cell Preserv Technol 1:63–80. doi: 10.1089/15383440260073301 CrossRefGoogle Scholar
  10. Bessems M, Doorschodt BM, van Vliet AK, van Gulik TM (2004) Preservation of rat livers by cold storage: a comparison between University of Wisconsin solution and Hypothermosol. Ann Transplant 9:35–37PubMedGoogle Scholar
  11. Dahdah NS, Taylor MJ, Russo P, Wagerle LC (1999) Effects of hypothermosol, an experimental acellular solution fdor tissue preservation and cardiopulmonary bypass, on isolated newborn lamb coronary vessels subjected to ultra profound hypothermia and anoxia. Cryobiology 39:58–68. doi: 10.1006/cryo.1999.2185 PubMedCrossRefGoogle Scholar
  12. Duval M, Plin C, Elimadi A, Vallerand D, Tillement JP, Morin D, Haddad PS (2006) Implication of mitochondrial dysfunction and cell death in cold preservation-warm reperfusion-induced hepatocyte injury. Can J Physiol Pharmacol 84:547–554PubMedGoogle Scholar
  13. Hewitt NJ, Lechon MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothius GM, Hengstler JG (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234. doi: 10.1080/03602530601093489 PubMedCrossRefGoogle Scholar
  14. Janssen H, Janssen PH, Broelsch CE (2003) Celsior solution compared with University of Wisconsin solution (UW) and histidine-tryptophan-ketoglutarate solution (HTK) in the protection of human hepatocytes against ischemia-reperfusion injury. Transpl Int 16:515–522PubMedGoogle Scholar
  15. Kerkweg U, Li T, de Groot H, Rauen U (2002) Cold-induced apoptosis of rat liver cells in University of Wisconsin solution: the central role of chelatable iron. Hepatology 35:560–567. doi: 10.1053/jhep.2002.31869 PubMedCrossRefGoogle Scholar
  16. Kim JS, Southard JH (1999) Phospholipid metabolism of hypothermically stored rat hepatocytes. Hepatology 30:1232–1240. doi: 10.1002/hep.510300531 PubMedCrossRefGoogle Scholar
  17. Kunieda T, Maruyama M, Okitsu T, Shibata N, Takesue M, Totsugawa T, Kosaka Y, Arata T, Kobayashi K, Ikeda H, Oshita M, Nakaji S, Ohmoto K, Yamamoto Y, Kurabayashi Y, Kodama M, Tanaka N, Kobayashi N (2003) Cryopreservation of primarily isolated porcine hepatocytes with UW solution. Cell Transplant 12:607–616PubMedGoogle Scholar
  18. Lai PH, Sielaff TD, Hu WS (2005) Sustaining a bioartificial liver under hypothermic conditions. Tissue Eng 11:427–437. doi: 10.1089/ten.2005.11.427 PubMedCrossRefGoogle Scholar
  19. LeCluyse EL, Alexandre E, Hamilton GA, Viollon-Abadie C, Coon DJ, Jolley S, Richert L (2005) Isolation and culture of primary human hepatocytes. Methods Mol Biol 290:207–229PubMedGoogle Scholar
  20. Li AP (2007) Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem Biol Interact 168:16–29. doi: 10.1016/j.cbi.2007.01.001 PubMedCrossRefGoogle Scholar
  21. Li AP, Kedderis GL (1997) Primary hepatocyte culture as an experimental model for the evaluation of interactions between xenobiotics and drug-metabolizing enzymes. Chem Biol Interact 107:1–3. doi: 10.1016/S0009-2797(97)00069-0 PubMedCrossRefGoogle Scholar
  22. Li G, Liu Y, Liang J (2003) Isolation and protective effect in UW solution of human hepatocytes during cold storage. Int Congr Ser 1255:217–218. doi: 10.1016/S0531-5131(03)00657-5 CrossRefGoogle Scholar
  23. Łaba A, Ostrowska A, Patrzałek A, Paradowski D, Lange A (2005) Characterization of human hepatocytes isolated from non-transplantable livers. Arch Immunol Ther Exp (Warsz) 53:442–453Google Scholar
  24. Maccarrone M, Bari M, Battista N, Di Rienzo M, Falciglia K, Finazzi Agro A (2001) Oxidation products of polyamines induce mitochondrial uncoupling and cytochrome c relaease. FEBS Lett 507:30–34. doi: 10.1016/S0014-5793(01)02949-0 PubMedCrossRefGoogle Scholar
  25. Mathew AJ, Van Buskirk RG, Baust JG (2002) Improved hypothermic preservation of human renal cells through suppression of both apoptosis and necrosis. Cell Preserv Technol 1:239–253. doi: 10.1089/15383440260682071 CrossRefGoogle Scholar
  26. Mathew AJ, Baust JM, Van Buskirk RG, Baust JG (2004) Cell preservation in reparative medicine: evolution of individualized solution composition. Tissue Eng 10:1662–1671. doi: 10.1089/ten.2004.10.1662 PubMedCrossRefGoogle Scholar
  27. Mathew AJ, Baust JM, Ostrowska A, Van Buskirk RG, Baust JG (2006) Extended hypothermic storage of isolated human hepatocytes using HypoThermosol-FRS. Cryobiology 53:437. doi: 10.1016/j.cryobiol.2006.10.166 CrossRefGoogle Scholar
  28. Matsushita T, Yagi T, Hardin JA, Cragun JD, Crow FW, Bergen HRIII, Gores GJ, Nyberg SL (2003) Apoptotic cell death and function of cryopreserved porcine hepatocytes in a bioartificial liver. Cell Transplant 12:109–121PubMedGoogle Scholar
  29. Meneses-Lorente G, Pattison C, Guyomard C, Chesne C, Heavens R, Watt AP, Sohal B (2007) Utility of long-term cultured human hepatocytes as an in vitro model for cytochrome P450 induction. Drug Metab Dispos 35:215–220. doi: 10.1124/dmd.106.009423 PubMedCrossRefGoogle Scholar
  30. Miyamoto Y, Suzuki S, Nomura K, Enosawa S (2006) Improvement of hepatocyte viability after cryopreservation by supplementation of long-chain oligosaccharide in the freezing medium in rats and humans. Cell Transplant 15:911–919. doi: 10.3727/000000006783981404 PubMedCrossRefGoogle Scholar
  31. Moray G, Sevmis S, Karakayali FY, Gorur SK, Haberal M (2006) Comparison of histidine-tryptophan-ketoglutarate and University of Wisconsin in living-donor liver transplantation. Transplant Proc 38:3572–3575. doi: 10.1016/j.transproceed.2006.10.174 PubMedCrossRefGoogle Scholar
  32. Neveux N, De Bandt JP, Chaumeil JC, Cynober L (2002) Hepatic preservation, liposomally entrapped adenosine triphosphate and nitric oxide production: a study of energy state and protein metabolism in the cold-stored rat liver. Scand J Gastroenterol 37:1057–1063. doi: 10.1080/003655202320378266 PubMedCrossRefGoogle Scholar
  33. Oleson FB, Berman CL, Li AP (2004) An evaluation of the P450 inhibition and induction potential of daptomycin in primary human hepatocytes. Chem Biol Interact 150:137–147. doi: 10.1016/j.cbi.2004.08.004 PubMedCrossRefGoogle Scholar
  34. Olinga P, Marema M, Slooff MJ, Meijer DK, Groothuis GM (1997) Influence of 48 hours of cold storage in University of Wisconsin organ preservation solution on metabolic capacity of rat hepatocytes. J Hepatol 27:738–743. doi: 10.1016/S0168-8278(97)80091-8 PubMedCrossRefGoogle Scholar
  35. Ostrowska A, Bode DC, Pruss J, Bilir B, Smith GD, Zeisloft S (2000) Investigation of functional and morphological integrity of freshly isolated and cryopreserved human hepatocytes. Cell Tissue Bank 1:55–68. doi: 10.1023/A:1010175906791 PubMedCrossRefGoogle Scholar
  36. Ostrowska A, Hu X, Bode DC (2002) Pre-clinical characterisation of freshly isolated and cryopreserved human hepatocytes. Adv Tissue Bank 6:233–249CrossRefGoogle Scholar
  37. Panzera P, Rotelli MT, Salerno AM, Cicco G, Catalano G, D’Elia G, Greco L, Lupo L, Memeo V (2005) Solutions for organ perfusion and storage: haemorheologic aspects. Transplant Proc 37:2456–2458. doi: 10.1016/j.transproceed.2005.06.024 PubMedCrossRefGoogle Scholar
  38. Pollack M, Leeuwenburgh C (2001) Apoptosis and aging: role of the mitochondria. J Gerontol A Biol Sci Med Sci 56:B475–B482PubMedGoogle Scholar
  39. Rauen U, Polzar B, Stephan H, Mannherz HG, De Grot H (1999) Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB 13:155–168Google Scholar
  40. Richert L, Liguori MJ, Abadie C, Heyd B, Mantion G, Halkic N, Waring JF (2006) Gene expression in human hepatocytes in suspension after isolation is similar to the liver of origin, is not affected by hepatocyte cold storage and cryopreservation, but is strongly changed after hepatocyte plating. Drug Metab Dispos 34:870–879. doi: 10.1124/dmd.105.007708 PubMedCrossRefGoogle Scholar
  41. Riga AT, Fuller BJ, Davidson BR (2000) The effect of human organ preservation and albumin flush solution on in vitro cell metabolic activity. Clin Chem Lab Med 38:1191–1193. doi: 10.1515/CCLM.2000.186 PubMedCrossRefGoogle Scholar
  42. Serralta A, Donato MT, Martinez A, Pareja E, Orbis F, Castell JV, Mir J, Gomez-Lechon MJ (2005) Influence of preservation solution on the isolation and culture of human hepatocytes from liver grafts. Cell Transplant 14:837–843. doi: 10.3727/000000005783982495 PubMedCrossRefGoogle Scholar
  43. Shanina IV, Kravchenko LP, Fuller BJ, Grischenko VI (2000) A comparison of a sucrose-based solution with other preservation media for cold storage of isolated hepatocytes. Cryobiology 41:315–318. doi: 10.1006/cryo.2000.2286 PubMedCrossRefGoogle Scholar
  44. Snyder KK, Van Buskirk RG, Baust JM, Mathew AJ, Baust JG (2004) Biological packaging for the global cell and tissue therapy markets. Bioprocessing J 3:39–45Google Scholar
  45. Snyder KK, Baust JM, Van Buskirk RG, Baust JG (2005) Enhanced hypothermic storage of neonatal cardiomyocytes. Cell Preserv Technol 3:61–74. doi: 10.1089/cpt.2005.3.61 CrossRefGoogle Scholar
  46. Sosef MN, Baust JM, Sugimachi K, Fowler A, Tompkins RG, Toner M (2005) Cryopreservation of isolated primary rat hepatocytes: enhanced survival and long-term hepatospecific function. Ann Surg 241:125–133PubMedGoogle Scholar
  47. Straatsburg IH, Abrahamse SL, Song SW, Hartman RJ, Van Gulik TM (2002) Evaluation of rat liver apoptotic and necrotic cell death after cold storage using UW, HTK, and Celsior. Transplantation 74:458–464. doi: 10.1097/00007890-200208270-00005 PubMedCrossRefGoogle Scholar
  48. Takesue M, Maruyama M, Shibata N, Kunieda T, Okitsu T, Sakaguchi M, Totsugawa T, Kosaka Y, Arata A, Ikeda H, Matsuoka J, Oyama T, Kodama M, Ohmoto K, Yamamoto S, Kurabayashi Y, Yamamoto I, Tanaka N, Kobayashi N (2003) Maintenance of cold-preserved porcine hepatocyte function with UW solution and ascorbic acid-2 glucoside. Cell Transplant 12:599–606PubMedGoogle Scholar
  49. Tanaka K, Soto-Gutierrez A, Navarro-Alvarez N, Carrillo JD, Kobayashi N (2006) Functional hepatocyte culture and its application to cell therapies. Cell Transplant 15:855–864. doi: 10.3727/000000006783981332 PubMedCrossRefGoogle Scholar
  50. Ullrich A, Berg C, Hengstler JG, Runge D (2007) Use of standardised and validated long-term human hepatocyte culture system for repetitive analyses of drugs: repeated administrations of acetaminophen reduces albumin and urea secretion. ALTEX 24:35–40PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alina Ostrowska
    • 1
    Email author
  • Kenan Gu
    • 2
  • Donald C. Bode
    • 3
  • Robert G. Van Buskirk
    • 4
  1. 1.Wroclaw University of Environmental and Life SciencesWrocławPoland
  2. 2.Emisphere Technologies, Inc.TarrytownUSA
  3. 3.Absorption Systems LPExtonUSA
  4. 4.Department of Biological SciencesState University of New YorkBinghamtonUSA

Personalised recommendations