Advertisement

Archives of Toxicology

, Volume 83, Issue 6, pp 625–634 | Cite as

Statistical evaluation of the in vivo micronucleus assay

  • Ludwig A. HothornEmail author
  • Daniel Gerhard
Genotoxicity and Carcinogenicity

Abstract

The statistical evaluation of the in vivo micronucleus assay is focused on multiple contrast tests for comparisons versus the negative control for count data taking the between-animals variability into account. For a possible claim the compound is not genotoxic in the micronucleus assay a proof of safety approach is proposed. For these statistical approaches user-friendly software is free available.

Keywords

In vivo micronucleus assay Statistics Software 

Notes

Acknowledgment

Parts of this work were supported by EC-JRC, ECVAM, project number CCR.IHCP.C433223.X0.

References

  1. Abramsson-Zetterberg L, Svensson K (2005) Semicarbazide is not genotoxic in the ow cytometry-based micronucleus assay in vivo. Toxicol Lett 155(2):211–217PubMedCrossRefGoogle Scholar
  2. Altman DG, Bland JM (1995) Statistics notes––absence of evidence is not evidence of absence. Br Med J 311(7003):485Google Scholar
  3. Armitage P (1955) Tests for linear trends in proportions and frequencies. Biometrics 11(3):375–386CrossRefGoogle Scholar
  4. Bretz F, Hothorn LA (2002) Detecting dose-response using contrasts: asymptotic power and sample size determination for binomial data. Stat Med 21(22):3325–3335PubMedCrossRefGoogle Scholar
  5. Bretz F, Hothorn LA (2003) Statistical analysis of monotone or non-monotone dose-response data from in vitro toxicological assays. Altern Lab Anim 31:81–96PubMedGoogle Scholar
  6. Bretz F, Hothorn LA, Hsu JC (2003) Identifying effective and/or safe doses by stepwise confidence intervals for ratios. Stat Med 22(6):847–858PubMedCrossRefGoogle Scholar
  7. Carr GJ, Gorelick NJ (1994) Statistical tests of significance in transgenic mutation assays––considerations on the experimental unit. Environ Mol Mutagen 24(4):276–282PubMedCrossRefGoogle Scholar
  8. Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50(272):1096–1121CrossRefGoogle Scholar
  9. Durling LJK, Svensson K, Abramsson-Zetterberg L (2007) Furan is not genotoxic in the micronucleus assay in vivo or in vitro. Toxicol Lett 169(1):43–50PubMedCrossRefGoogle Scholar
  10. Engelhardt G (2006) In vivo micronucleus test in mice with 1-phenylethanol. ArchToxicol 80(12):868–872Google Scholar
  11. Kim BS, Cho MH, Kim HJ (2000) Statistical analysis of in vivo rodent micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen 469(2):233–241CrossRefGoogle Scholar
  12. Krishna G, Hayashi M (2000) In vivo rodent micronucleus assay: protocol, conduct and data interpretation. Mutat Res Fundam Mol Mech Mutagen 455(1–2):155–166CrossRefGoogle Scholar
  13. Lovell DP, Omori T (2008) Statistical issues in the use of the comet assay. Mutagenesis, pp 1–12Google Scholar
  14. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, CRC, Boca Raton/LondonGoogle Scholar
  15. Millard SP (1987) Proof of safety versus proof of hazard. Biometrics 43(3):719–725PubMedCrossRefGoogle Scholar
  16. OECD 474 (2006) Oecd guideline for testing of chemicals: in vivo micronucleus test. Technical report, OECD/OCDE 474Google Scholar
  17. Paul S, Saha KK (2007) The generalized linear model and extensions: a review and some biological and environmental applications. Environmetrics 18(4):421–443CrossRefGoogle Scholar
  18. R Development core team (2007):R A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3–900051–07–0Google Scholar
  19. Schaarschmidt F, Biesheuvel E (2008) Asymptotic simultaneous confidence intervals for many-to-one comparisons of binary proportions in randomized clinical trials. J Biopharm Stat, 18:(accepted)Google Scholar
  20. Venables WN, Ripley BD (2002) Modern applied statistics with S. SpringerGoogle Scholar
  21. White GC, Bennetts RE (1996) Analysis of frequency count data using the negative binomial distribution. Ecology 77(8):2549–2557CrossRefGoogle Scholar
  22. Williams DA (1971) Test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics 27(1):103PubMedCrossRefGoogle Scholar
  23. Zeileis A, Kleiber C, Jackman S (2007) Regression models for count data in r. Technical report, Research Report Series/Department of Statistics and Mathematics, Nr. 53 Wien, WirtschaftsunivGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of BiostatisticsLeibniz UniversityHannoverGermany

Personalised recommendations