Archives of Toxicology

, Volume 83, Issue 1, pp 11–21 | Cite as

Antioxidative and anti-carcinogenic activities of tea polyphenols

  • Chung S. Yang
  • Joshua D. Lambert
  • Shengmin Sang
Review Article

Abstract

Tea (Camellia sinensis, Theaceace), a popular beverage consumed world-wide, has been studied for its preventive effects against cancer as well as cardiovascular, neurodegenerative, and other diseases. Most of the proposed beneficial effects have been attributed to the polyphenolic compounds in tea, but the nature of these activities and the molecular mechanisms of their actions remain unclear. Tea polyphenols are known to be strong antioxidants. Prevention of oxidative stress, modulation of carcinogen metabolism, and prevention of DNA damage have been suggested as possible cancer preventive mechanisms for tea and tea polyphenols. In this chapter, we discuss these topics in the light of biotransformation and bioavailability of tea polyphenols. We also review the preventive effects of tea polyphenols in animal models of carcinogenesis and some of the possible post-initiation mechanisms of action. Finally, we discuss the effects of tea consumption on cancer risk in humans. It is our aim to raise some of the unanswered questions regarding cancer prevention by tea and to stimulate further research in this area.

Keywords

Catechin EGCG Aberrant Crypt Focus Cancer Preventive Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Grant support: NIH grants CA120915, CA122474, and CA133021.

References

  1. Auger C, Mullen W, Hara Y, Crozier A (2008) Bioavailability of polyphenon E flavan-3-ols in humans with an ileostomy. J Nutr 138:1535S–1542SPubMedGoogle Scholar
  2. Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37:693–704PubMedGoogle Scholar
  3. Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66:1234–1240PubMedCrossRefGoogle Scholar
  4. Carter O, Dashwood RH, Wang R, Dashwood WM, Orner GA, Fischer KA, Lohr CV, Pereira CB, Bailey GS, Williams DE (2007) Comparison of white tea, green tea, epigallocatechin-3-gallate, and caffeine as inhibitors of PhIP-induced colonic aberrant crypts. Nutr Cancer 58:60–65PubMedGoogle Scholar
  5. Catterall F, McArdle NJ, Mitchell L, Papayanni A, Clifford MN, Ioannides C (2003) Hepatic and intestinal cytochrome P450 and conjugase activities in rats treated with black tea theafulvins and theaflavins. Food Chem Toxicol 41:1141–1147PubMedCrossRefGoogle Scholar
  6. Chen L, Bondoc FY, Lee MJ, Hussin AH, Thomas PE, Yang CS (1996) Caffeine induces cytochrome P4501A2: induction of CYP1A2 by tea in rats. Drug Metab Dispos 24:529–533PubMedGoogle Scholar
  7. Chen L, Lee MJ, Li H, Yang CS (1997) Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos 25:1045–1050PubMedGoogle Scholar
  8. Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y, Alberts DS (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9:3312–3319PubMedGoogle Scholar
  9. Chow HH, Hakim IA, Vining DR, Crowell JA, Cordova CA, Chew WM, Xu MJ, Hsu CH, Ranger-Moore J, Alberts DS (2006) Effects of repeated green tea catechin administration on human cytochrome P450 activity. Cancer Epidemiol Biomarkers Prev 15:2473–2476PubMedCrossRefGoogle Scholar
  10. Chow HH, Hakim IA, Vining DR, Crowell JA, Tome ME, Ranger-Moore J, Cordova CA, Mikhael DM, Briehl MM, Alberts DS (2007) Modulation of human glutathione s-transferases by polyphenon e intervention. Cancer Epidemiol Biomarkers Prev 16:1662–1666PubMedCrossRefGoogle Scholar
  11. Chung FL, Wang M, Rivenson A, Iatropoulos MJ, Reinhardt JC, Pittman B, Ho CT, Amin SG (1998) Inhibition of lung carcinogenesis by black tea in Fischer rats treated with a tobacco-specific carcinogen: caffeine as an important constituent. Cancer Res 58:4096–4101PubMedGoogle Scholar
  12. Donovan JL, Chavin KD, Devane CL, Taylor RM, Wang JS, Ruan Y, Markowitz JS (2004) Green tea (Camellia sinensis) extract does not alter cytochrome p450 3A4 or 2D6 activity in healthy volunteers. Drug Metab Dispos 32:906–908PubMedCrossRefGoogle Scholar
  13. Embola CW, Weisburger JH, Weisburger MC (2001) Urinary excretion of N-OH–2-amino-3-methylimidazo[4, 5-f]quinoline-N-glucuronide in F344 rats is enhanced by green tea. Carcinogenesis 22:1095–1098PubMedCrossRefGoogle Scholar
  14. Ermakova S, Choi BY, Choi HS, Kang BS, Bode AM, Dong Z (2005) The intermediate filament protein vimentin is a new target for epigallocatechin gallate. J Biol Chem 280:16882–16890PubMedCrossRefGoogle Scholar
  15. Gao YT, McLaughlin JK, Blot WJ, Ji BT, Dai Q, Fraumeni JF Jr (1994) Reduced risk of esophageal cancer associated with green tea consumption. J Natl Cancer Inst 86:855–858PubMedCrossRefGoogle Scholar
  16. Glei M, Pool-Zobel BL (2005) The main catechin of green tea, (-)-epigallocatechin-3-gallate (EGCG), reduces bleomycin-induced DNA damage in human leucocytes. Toxicology In VitroGoogle Scholar
  17. Hakim IA, Harris RB, Brown S, Chow HH, Wiseman S, Agarwal S, Talbot W (2003) Effect of increased tea consumption on oxidative DNA damage among smokers: a randomized controlled study. J Nutr 133:3303S–3309SPubMedGoogle Scholar
  18. Hao X, Bose M, Lambert JD, Ju J, Lu G, Lee MJ, Park S, Husain A, Wang S, Sun Y, Yang CS (2007) Inhibition of intestinal tumorigenesis in Apc(min/+) mice by green tea polyphenols (polyphenon E) and individual catechins. Nutr Cancer 59:62–69PubMedGoogle Scholar
  19. Hashimoto R, Yaita M, Tanaka K, Hara Y, Kojo S (2000) Inhibition of radical reaction of apolipoprotein B-100 and alpha-tocopherol in human plasma by green tea catechins. J Agric Food Chem 48:6380–6383PubMedCrossRefGoogle Scholar
  20. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143PubMedCrossRefGoogle Scholar
  21. Hodgdon JM, Proudfoot JM, Croft KD, Pudde IB, Mori TA, Berllin LJ (1999) Comparison of the effects of black and green tea on invitro lipoprotein oxidation in human serum. J Sci Food Agric 79:561–566CrossRefGoogle Scholar
  22. Hong J, Lu H, Meng X, Ryu JH, Hara Y, Yang CS (2002) Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res 62:7241–7246PubMedGoogle Scholar
  23. Hong J, Lambert JD, Lee SH, Sinko PJ, Yang CS (2003) Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun 310:222–227PubMedCrossRefGoogle Scholar
  24. Hoshiyama Y, Kawaguchi T, Miura Y, Mizoue T, Tokui N, Yatsuya H, Sakata K, Kondo T, Kikuchi S, Toyoshima H, Hayakawa N, Tamakoshi A, Yoshimura T (2005) Green tea and stomach cancer-a short review of prospective studies. J Epidemiol 15(Suppl 2):S109–S112PubMedCrossRefGoogle Scholar
  25. Hou Z, Lambert JD, Chin KV, Yang CS (2004) Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat Res 555:3–19PubMedGoogle Scholar
  26. Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV, Yang CS (2005) Mechanism of Action of (-)-Epigallocatechin-3-Gallate: Auto-oxidation-Dependent Inactivation of Epidermal Growth Factor Receptor and Direct Effects on Growth Inhibition in Human Esophageal Cancer KYSE 150 Cells. Cancer Res 65:8049–8056PubMedCrossRefGoogle Scholar
  27. Hsu SP, Wu MS, Yang CC, Huang KC, Liou SY, Hsu SM, Chien CT (2007) Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines. Am J Clin Nutr 86:1539–1547PubMedGoogle Scholar
  28. Hu M, Chen J, Lin H (2003) Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther 307:314–321PubMedCrossRefGoogle Scholar
  29. Inami S, Takano M, Yamamoto M, Murakami D, Tajika K, Yodogawa K, Yokoyama S, Ohno N, Ohba T, Sano J, Ibuki C, Seino Y, Mizuno K (2007) Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int Heart J 48:725–732PubMedCrossRefGoogle Scholar
  30. Jiang T, Glickman BW, de Boer JG (2001) Protective effect of green tea against benzo[a]pyrene-induced mutations in the liver of Big Blue transgenic mice. Mutat Res 480–481:147–151PubMedGoogle Scholar
  31. Ju J, Hong J, Zhou JN, Pan Z, Bose M, Liao J, Yang GY, Liu YY, Hou Z, Lin Y, Ma J, Shih WJ, Carothers AM, Yang CS (2005) Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 65:10623–10631PubMedCrossRefGoogle Scholar
  32. Ju J, Lu G, Lambert JD, Yang CS (2007) Inhibition of carcinogenesis by tea constituents. Semin Cancer Biol 17:395–402PubMedCrossRefGoogle Scholar
  33. Kaur S, Greaves P, Cooke DN, Edwards R, Steward WP, Gescher AJ, Marczylo TH (2007) Breast cancer prevention by green tea catechins and black tea theaflavins in the C3(1) SV40 T, t antigen transgenic mouse model is accompanied by increased apoptosis and a decrease in oxidative DNA adducts. J Agric Food Chem 55:3378–3385PubMedCrossRefGoogle Scholar
  34. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505PubMedCrossRefGoogle Scholar
  35. Kohri T, Nanjo F, Suzuki M, Seto R, Matsumoto N, Yamakawa M, Hojo H, Hara Y, Desai D, Amin S, Conaway CC, Chung FL (2001) Synthesis of (-)-[4–3H]epigallocatechin gallate and its metabolic fate in rats after intravenous administration. J Agric Food Chem 49:1042–1048PubMedCrossRefGoogle Scholar
  36. Kondo K, Kurihara M, Miyata N, Suzuki T, Toyoda M (1999) Scavenging mechanisms of (-)-epigallocatechin gallate and (-)-epicatechin gallate on peroxyl radicals and formation of superoxide during the inhibitory action. Free Radic Biol Med 27:855–863PubMedCrossRefGoogle Scholar
  37. Krishnan R, Raghunathan R, Maru GB (2005) Effect of polymeric black tea polyphenols on benzo(a)pyrene [B(a)P]-induced cytochrome P4501A1 and 1A2 in mice. Xenobiotica 35:671–682PubMedCrossRefGoogle Scholar
  38. Kurahashi N, Sasazuki S, Iwasaki M, Inoue M, Tsugane S (2008) Green tea consumption and prostate cancer risk in Japanese men: a prospective study. Am J Epidemiol 167:71–77PubMedCrossRefGoogle Scholar
  39. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296:1255–1265PubMedCrossRefGoogle Scholar
  40. Lambert JD, Yang CS (2003) Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res 523–524:201–208Google Scholar
  41. Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, Seril DN, Sturgill MG, Yang CS (2003) Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr 133:4172–4177PubMedGoogle Scholar
  42. Lambert JD, Hong J, Lee MJ, Sang S, Meng XF, Lu H, Yang CS (2005a) Biotransformation and bioavailability of tea polyphenols: implications for cancer prevention research. In: Shahidi F, Ho C-T (eds) Phenolic compounds in foods and natural health products, ACS Symposium Series 909, Washington, pp 212–224Google Scholar
  43. Lambert JD, Hong J, Yang GY, Liao J, Yang CS (2005b) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81:284S–291SPubMedGoogle Scholar
  44. Lambert JD, Lee MJ, Diamond L, Ju J, Hong J, Bose M, Newmark HL, Yang CS (2006) Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab Dispos 34:8–11PubMedCrossRefGoogle Scholar
  45. Landau JM, Wang ZY, Yang GY, Ding W, Yang CS (1998) Inhibition of spontaneous formation of lung tumors and rhabdomyosarcomas in A/J mice by black and green tea. Carcinogenesis 19:501–507PubMedCrossRefGoogle Scholar
  46. Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, Lambert G, Mohr S, Yang CS (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev 11:1025–1032PubMedGoogle Scholar
  47. Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M (2003) Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 63:8118–8121PubMedGoogle Scholar
  48. Li C, Lee MJ, Sheng S, Meng X, Prabhu S, Winnik B, Huang B, Chung JY, Yan S, Ho CT, Yang CS (2000) Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem Res Toxicol 13:177–184PubMedCrossRefGoogle Scholar
  49. Li C, Meng X, Winnik B, Lee MJ, Lu H, Sheng S, Buckley B, Yang CS (2001) Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ionization mass spectrometry. Chem Res Toxicol 14:702–707PubMedCrossRefGoogle Scholar
  50. Liao J, Yang GY, Park ES, Meng X, Sun Y, Jia D, Seril DN, Yang CS (2004) Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea. Nutr Cancer 48:44–53PubMedCrossRefGoogle Scholar
  51. Lin DX, Thompson PA, Teitel C, Chen JS, Kadlubar FF (2003) Direct reduction of N-acetoxy-PhIP by tea polyphenols: a possible mechanism for chemoprevention against PhIP-DNA adduct formation. Mutat Res 523–524:193–200PubMedGoogle Scholar
  52. Liu TT, Liang NS, Li Y, Yang F, Lu Y, Meng ZQ, Zhang LS (2003) Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats. World J Gastroenterol 9:2742–2744PubMedGoogle Scholar
  53. Lu H (2002) Mechanistic studies on the phase II metabolism and absorption of tea catechins. In: Toxicology, Rutgers, The State University of New Jersey, New Brunswick, pp 160Google Scholar
  54. Lu H, Meng X, Li C, Sang S, Patten C, Sheng S, Hong J, Bai N, Winnik B, Ho CT, Yang CS (2003a) Glucuronides of tea catechins: enzymology of biosynthesis and biological activities. Drug Metab Dispos 31:452–461PubMedCrossRefGoogle Scholar
  55. Lu H, Meng X, Yang CS (2003b) Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab Dispos 31:572–579PubMedCrossRefGoogle Scholar
  56. Lu G, Liao J, Yang G, Reuhl KR, Hao X, Yang CS (2006) Inhibition of adenoma progression to adenocarcinoma in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine. Cancer Res 66:11494–11501PubMedCrossRefGoogle Scholar
  57. Lu G, Xiao H, You H, Lin Y, Jin H, Snagaski B, Yang CS (2008) Synergistic inhibition of lung tumorigenesis by a combination of green tea polyphenols and atorvastatin. Clin Cancer Res 14:4981–4988PubMedCrossRefGoogle Scholar
  58. Maliakal PP, Coville PF, Wanwimolruk S (2001) Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J Pharm Pharmacol 53:569–577PubMedCrossRefGoogle Scholar
  59. McArdle NJ, Clifford MN, Ioannides C (1999) Consumption of tea modulates the urinary excretion of mutagens in rats treated with IQ. Role of caffeine. Mutat Res 441:191–203PubMedGoogle Scholar
  60. Meeran SM, Mantena SK, Elmets CA, Katiyar SK (2006) (-)-Epigallocatechin-3-gallate prevents photocarcinogenesis in mice through interleukin-12-dependent DNA repair. Cancer Res 66:5512–5520PubMedCrossRefGoogle Scholar
  61. Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee MJ, Ho CT, Yang CS (2002) Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chem Res Toxicol 15:1042–1050PubMedCrossRefGoogle Scholar
  62. Meselhy MR, Nakamura N, Hattori M (1997) Biotransformation of (-)-epicatechin 3-O-gallate by human intestinal bacteria. Chem Pharm Bull (Tokyo) 45:888–893Google Scholar
  63. Mimoto J, Kiura K, Matsuo K, Yoshino T, Takata I, Ueoka H, Kataoka M, Harada M (2000) (-)-Epigallocatechin gallate can prevent cisplatin-induced lung tumorigenesis in A/J mice. Carcinogenesis 21:915–919PubMedCrossRefGoogle Scholar
  64. Na HK, Surh YJ (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 46:1271–1278PubMedCrossRefGoogle Scholar
  65. Nam S, Smith DM, Dou QP (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276:13322–13330PubMedCrossRefGoogle Scholar
  66. Rice-Evans C (1999) Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soc Exp Biol Med 220:262–266PubMedCrossRefGoogle Scholar
  67. Sang SM, Tian S, Meng X, Stark RE, Rosen RT, Yang CS, Ho C-T (2002) Theadibenzotropolone A, a new type pigment from enzymatic oxidation of (-)-epicatechin and (-)-epigallocatechin gallate and characterized from black tea using LC/MS/MS. Tetrahedron Lett 43:7129–7133CrossRefGoogle Scholar
  68. Sang S, Lambert JD, Hong J, Tian S, Lee MJ, Stark RE, Ho CT, Yang CS (2005) Synthesis and structure identification of thiol conjugates of (-)-epigallocatechin gallate and their urinary levels in mice. Chem Res Toxicol 18:1762–1769PubMedCrossRefGoogle Scholar
  69. Sang S, Yang I, Buckley B, Ho CT, Yang CS (2007) Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (-)-epigallocatechin-3-gallate: studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radic Biol Med 43:362–371PubMedCrossRefGoogle Scholar
  70. Sang S, Lee MJ, Yang I, Buckley B, Yang CS (2008) Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. Rapid Commun Mass Spectrom 22:1567–1578PubMedCrossRefGoogle Scholar
  71. Schuller HM, Porter B, Riechert A, Walker K, Schmoyer R (2004) Neuroendocrine lung carcinogenesis in hamsters is inhibited by green tea or theophylline while the development of adenocarcinomas is promoted: implications for chemoprevention in smokers. Lung Cancer 45:11–18PubMedCrossRefGoogle Scholar
  72. Schwartz JL, Baker V, Larios E, Chung FL (2005) Molecular and cellular effects of green tea on oral cells of smokers: a pilot study. Mol Nutr Food Res 49:43–51PubMedCrossRefGoogle Scholar
  73. Senthil Kumaran V, Arulmathi K, Srividhya R, Kalaiselvi P (2008) Repletion of antioxidant status by EGCG and retardation of oxidative damage induced macromolecular anomalies in aged rats. Exp Gerontol 43:176–183PubMedCrossRefGoogle Scholar
  74. Shen G, Xu C, Hu R, Jain MR, Nair S, Lin W, Yang CS, Chan JY, Kong AN (2005) Comparison of (-)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6 J mice and C57BL/6J/Nrf2 (-/-) mice. Pharm Res 22:1805–1820PubMedCrossRefGoogle Scholar
  75. Sherwood L (2004) Human physiology: from cells to systems. Wadsworth Publishing Co., BelmontGoogle Scholar
  76. Shi ST, Wang ZY, Smith TJ, Hong JY, Chen WF, Ho CT, Yang CS (1994) Effects of green tea and black tea on 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone bioactivation, DNA methylation, and lung tumorigenesis in A/J mice. Cancer Res 54:4641–4647PubMedGoogle Scholar
  77. Sohn OS, Surace A, Fiala ES, Richie JP Jr, Colosimo S, Zang E, Weisburger JH (1994) Effects of green and black tea on hepatic xenobiotic metabolizing systems in the male F344 rat. Xenobiotica 24:119–127PubMedCrossRefGoogle Scholar
  78. Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P (2008) Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci 26:217–223PubMedCrossRefGoogle Scholar
  79. Sun CL, Yuan JM, Lee MJ, Yang CS, Gao YT, Ross RK, Yu MC (2002) Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in Shanghai, China. Carcinogenesis 23:1497–1503PubMedCrossRefGoogle Scholar
  80. Tang L, Tang M, Xu L, Luo H, Huang T, Yu J, Zhang L, Gao W, Cox SB, Wang JS (2008) Modulation of aflatoxin biomarkers in human blood and urine by green tea polyphenols intervention. Carcinogenesis 29:411–417PubMedCrossRefGoogle Scholar
  81. Tulayakul P, Dong KS, Li JY, Manabe N, Kumagai S (2007) The effect of feeding piglets with the diet containing green tea extracts or coumarin on in vitro metabolism of aflatoxin B1 by their tissues. Toxicon 50:339–348PubMedCrossRefGoogle Scholar
  82. Valcic S, Muders A, Jacobsen NE, Liebler DC, Timmermann BN (1999) Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxyl radicals. Chem Res Toxicol 12:382–386PubMedCrossRefGoogle Scholar
  83. Valcic S, Burr JA, Timmermann BN, Liebler DC (2000) Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin from their reactions with peroxyl radicals. Chem Res Toxicol 13:801–810PubMedCrossRefGoogle Scholar
  84. Wang ZY, Hong JY, Huang MT, Reuhl KR, Conney AH, Yang CS (1992) Inhibition of N-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone-induced tumorigenesis in A/J mice by green tea and black tea. Cancer Res 52:1943–1947PubMedGoogle Scholar
  85. Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food Sci Nutr 37:705–718PubMedCrossRefGoogle Scholar
  86. Wu AH, Tseng CC, Van Den Berg D, Yu MC (2003a) Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer Res 63:7526–7529PubMedGoogle Scholar
  87. Wu AH, Yu MC, Tseng CC, Hankin J, Pike MC (2003b) Green tea and risk of breast cancer in Asian Americans. Int J Cancer 106:574–579PubMedCrossRefGoogle Scholar
  88. Xiao H, Hao X, Simi B, Ju J, Jiang H, Reddy BS, Yang CS (2008) Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats. Carcinogenesis 29:113–119PubMedCrossRefGoogle Scholar
  89. Xu Y, Ho CT, Amin SG, Han C, Chung FL (1992) Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in A/J mice by green tea and its major polyphenol as antioxidants. Cancer Res 52:3875–3879PubMedGoogle Scholar
  90. Xu M, Bailey AC, Hernaez JF, Taoka CR, Schut HA, Dashwood RH (1996) Protection by green tea, black tea, and indole-3-carbinol against 2-amino-3-methylimidazo[4, 5-f]quinoline-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis 17:1429–1434PubMedCrossRefGoogle Scholar
  91. Yang GY, Liu Z, Seril DN, Liao J, Ding W, Kim S, Bondoc F, Yang CS (1997) Black tea constituents, theaflavins, inhibit 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice. Carcinogenesis 18:2361–2365PubMedCrossRefGoogle Scholar
  92. Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42:25–54PubMedCrossRefGoogle Scholar
  93. Yang CS, Liao J, Yang GY, Lu G (2005) Inhibition of lung tumorigenesis by tea. Exp Lung Res 31:135–144PubMedCrossRefGoogle Scholar
  94. Yang CS, Lambert JD, Ju J, Lu G, Sang S (2007) Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharmacol 224:265–273PubMedCrossRefGoogle Scholar
  95. Yang CS, Sang S, Lambert JD, Lee MJ (2008) Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res 52(Suppl 1):S139–S151PubMedGoogle Scholar
  96. Yen GC, Ju JW, Wu CH (2004) Modulation of tea and tea polyphenols on benzo(a)pyrene-induced DNA damage in Chang liver cells. Free Radic Res 38:193–200PubMedCrossRefGoogle Scholar
  97. Yoshida H, Ishikawa T, Hosoai H, Suzukawa M, Ayaori M, Hisada T, Sawada S, Yonemura A, Higashi K, Ito T, Nakajima K, Yamashita T, Tomiyasu K, Nishiwaki M, Ohsuzu F, Nakamura H (1999) Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein. Biochem Pharmacol 58:1695–1703PubMedCrossRefGoogle Scholar
  98. Yuan JM, Gao YT, Yang CS, Yu MC (2007) Urinary biomarkers of tea polyphenols and risk of colorectal cancer in the Shanghai Cohort Study. Int J Cancer 120:1344–1350PubMedCrossRefGoogle Scholar
  99. Zhang Z, Liu Q, Lantry LE, Wang Y, Kelloff GJ, Anderson MW, Wiseman RW, Lubet RA, You M (2000) A germ-line p53 mutation accelerates pulmonary tumorigenesis: p53- independent efficacy of chemopreventive agents green tea or dexamethasone/myo-inositol and chemotherapeutic agents taxol or adriamycin. Cancer Res 60:901–907PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Chung S. Yang
    • 1
  • Joshua D. Lambert
    • 2
  • Shengmin Sang
    • 3
  1. 1.Department of Chemical Biology, Ernest Mario School of PharmacyRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Department of Food ScienceThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Human Nutrition Research Program, Biomedical, Biotechnology Research InstituteNorth Carolina Central UniversityKannapolisUSA

Personalised recommendations