Advertisement

Archives of Toxicology

, Volume 83, Issue 5, pp 429–437 | Cite as

Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes

  • Akiko FuruyamaEmail author
  • Sanae Kanno
  • Takahiro Kobayashi
  • Seishiro Hirano
Inorganic Compounds

Abstract

Translocation of inhaled ultrafine particles from the lungs into the blood may impair cardiovascular function. We administered ultrafine (20-nm) and fine (200-nm) gold colloid or fluorescein-labeled polystyrene particles to mice intratracheally and examined their localization in the lung and extrapulmonary organs. Fifteen minutes after instillation, dispersed and agglomerated 20-nm gold colloid particles were observed on the surface of endothelial cells, on the alveolar surface, in endocytotic vesicles of alveolar epithelial cells, and in the basement membrane of the lung. A small but noteworthy amount of gold was detected in the liver, kidney, spleen, and heart by inductively coupled plasma-mass spectrometry. After administration of 20- or 200-nm fluorescent particles, free particles were detected infrequently in blood vessels, on the endocardial surface, and in the kidney and liver only in the mice that received 20-nm particles, whereas phagocytes containing 20- or 200-nm particles were found in the extrapulmonary tissues. Fluorescent particle-laden alveolar macrophages administered intratracheally translocated from alveoli to extrapulmonary organs via the blood circulation. Thus, small amounts of ultrafine particles are transported across the alveolar wall into the blood circulation via endocytotic pathways, but particle-laden alveolar macrophages translocate both ultrafine and fine particles from the lungs to the extrapulmonary organs.

Keywords

Ultrafine particle Fine particle Intratracheal administration Endocytosis Alveolar wall Alveolar macrophage 

Notes

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (no. 16390186) from the Japan Society for the Promotion of Science. We thank Dr. Maruyama (Risk Analysis Laboratory Co. Ltd., Zama, Kanagawa, Japan) for helpful discussions. We also thank Ms. S. Kinoshita, Ms. R. Kumata, Ms. S. Murakami, and Ms. R. Sato (National Institute for Environmental Studies) for technical assistance.

References

  1. Brain JD, Molina RM, DeCamp MM, Warner AE (1999) Pulmonary intravascular macrophages: their contribution to the mononuclear phagocyte system in 13 species. Am J Physiol 276:L146–L154PubMedGoogle Scholar
  2. Cascio WE, Cozzi E, Hazarika S, Devlin RB, Henriksen RA, Lust RM, Van Scott MR, Wingard CJ (2007) Cardiac and vascular changes in mice after exposure to ultrafine particulate matter. Inhal Toxicol 19(1):67–73PubMedCrossRefGoogle Scholar
  3. Furuyama A, Hirano S, Koike E, Kobayashi T (2006) Induction of oxidative stress and inhibition of plasminogen activator inhibitor-1 production in endothelial cells following exposure to organic extracts of diesel exhaust particles and urban fine particles. Arch Toxicol 80:154–162PubMedCrossRefGoogle Scholar
  4. Geiser M (2002) Morphological aspects of particle uptake by lung phagocytes. Microsc Res Tech 57:512–522PubMedCrossRefGoogle Scholar
  5. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560PubMedGoogle Scholar
  6. Hamoir J, Nemmar A, Halloy D, Wirth D, Vincke G, Vanderplasschen A, Nemery B, Gustin P (2003) Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: role of size and surface properties. Toxicol Appl Pharmacol 190:278–285PubMedCrossRefGoogle Scholar
  7. Harder V, Gilmour P, Lentner B, Karg E, Takenaka S, Ziesenis A, Stampfl A, Kodavanti U, Heyder J, Schulz H (2005) Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles. Inhal Toxicol 17:29–42PubMedCrossRefGoogle Scholar
  8. Harmsen AG, Muggenburg BA, Snipes MB, Bice DE (1985) The role of macrophages in particle translocation from lungs to lymph nodes. Science 230(4731):1277–12780PubMedCrossRefGoogle Scholar
  9. Hirase T, Kawashima S, Wong EY, Ueyama T, Rikitake Y, Tsukita S, Yokoyama M, Staddon JM (2001) Regulation of tight junction permeability and occludin phosphorylation by RhoA-p160ROCK-dependent and -independent mechanisms. J Biol Chem 276:10423–10431PubMedCrossRefGoogle Scholar
  10. International Committee on Radiological Protection (1994) Human respiratory tract model for radiological protection. A report of Committee 2 of the ICRP. ICRP Publication 66. Pergamon Press, OxfordGoogle Scholar
  11. Kapp N, Kreyling W, Schulz H, Im Hof V, Gehr P, Semmler M, Geiser M (2004) Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microsc Res Tech 63:298–305PubMedCrossRefGoogle Scholar
  12. Kato T, Yashiro T, Murata Y, Herbert DC, Oshikawa K, Bando M, Ohno S, Sugiyama Y (2003) Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 311:47–51PubMedCrossRefGoogle Scholar
  13. Kendall M, Tetley TD, Wigzell E, Hutton B, Nieuwenhuijsen M, Luckham P (2002) Lung lining liquid modifies PM (2.5) in favor of particle aggregation: a protective mechanism. Am J Physiol Lung Cell Mol Physiol 282:L109–L114PubMedGoogle Scholar
  14. Khandoga A, Stampfl A, Takenaka S, Schulz H, Radykewicz R, Kreyling W, Krombach F (2004) Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 109:1320–1325PubMedCrossRefGoogle Scholar
  15. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530PubMedCrossRefGoogle Scholar
  16. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460PubMedGoogle Scholar
  17. Meiring JJ, Borm PJ, Bagate K, Semmler M, Seitz J, Takenaka S, Kreyling WG (2005) The influence of hydrogen peroxide and histamine on lung permeability and translocation of iridium nanoparticles in the isolated perfused rat lung. Part Fibre Toxicol 2:3PubMedCrossRefGoogle Scholar
  18. Nemmar A, Hoylaerts MF, Hoet PH, Vermylen J, Nemery B (2003) Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 186:38–45PubMedCrossRefGoogle Scholar
  19. Oberdörster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8PubMedCrossRefGoogle Scholar
  20. Omori T, Fujimoto G, Yoshimura I, Nitta H, Ono M (2003) Effects of particulate matter on daily mortality in 13 Japanese cities. J Epidemiol 13:314–322PubMedGoogle Scholar
  21. Patrick G, Stirling C (1992) Transport of particles of colloidal gold within and from rat lung after local deposition by alveolar microinjection. Environ Health Perspect 97:47–51PubMedCrossRefGoogle Scholar
  22. Penn A, Murphy G, Barker S, Henk W, Penn L (2005) Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environ Health Perspect 113:956–963PubMedCrossRefGoogle Scholar
  23. Pope CAIII, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141PubMedCrossRefGoogle Scholar
  24. Stearns RC, Paulauskis JD, Godleski JJ (2001) Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 24:108–115PubMedGoogle Scholar
  25. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109:547–551PubMedCrossRefGoogle Scholar
  26. Takenaka S, Karg E, Kreyling WG, Lentner B, Moller W, Behnke-Semmler M, Jennen L, Walch A, Michalke B, Schramel P, Heyder J, Schulz H (2006) Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 18:733–740PubMedCrossRefGoogle Scholar
  27. Wiebert P, Sanchez-Crespo A, Falk R, Philipson K, Lundin A, Larsson S, Möller W, Kreyling WG, Svartengren M (2006) No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhal Toxicol 18:741–747PubMedCrossRefGoogle Scholar
  28. Wold LE, Simkhovich BZ, Kleinman MT, Nordlie MA, Dow JS, Sioutas C, Kloner RA (2006) In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias. Cardiovasc Toxicol 6:69–78PubMedCrossRefGoogle Scholar
  29. Yumoto R, Nishikawa H, Okamoto M, Katayama H, Nagai J, Takano M (2006) Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am J Physiol Lung Cell Mol Physiol 290:L946–L955PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Akiko Furuyama
    • 1
    Email author
  • Sanae Kanno
    • 1
  • Takahiro Kobayashi
    • 2
    • 3
  • Seishiro Hirano
    • 1
  1. 1.Research Center for Environmental RiskNational Institute for Environmental StudiesTsukubaJapan
  2. 2.Environmental Health Sciences DivisionNational Institute for Environmental StudiesTsukubaJapan
  3. 3.The Center for Innovation Systems Research, Integrated Research InstituteTokyo Institute for TechnologyYokohamaJapan

Personalised recommendations