Archives of Toxicology

, Volume 82, Issue 10, pp 667–715 | Cite as

Inhibition and induction of human cytochrome P450 enzymes: current status

  • Olavi PelkonenEmail author
  • Miia Turpeinen
  • Jukka Hakkola
  • Paavo Honkakoski
  • Janne Hukkanen
  • Hannu Raunio
Review Article


Variability of drug metabolism, especially that of the most important phase I enzymes or cytochrome P450 (CYP) enzymes, is an important complicating factor in many areas of pharmacology and toxicology, in drug development, preclinical toxicity studies, clinical trials, drug therapy, environmental exposures and risk assessment. These frequently enormous consequences in mind, predictive and pre-emptying measures have been a top priority in both pharmacology and toxicology. This means the development of predictive in vitro approaches. The sound prediction is always based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms; consequently the description of these aspects is the purpose of this review. We cover both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches. Just because validation is an essential part of any in vitro–in vivo extrapolation scenario, we cover also necessary in vivo research and findings in order to provide a proper view to justify in vitro approaches and observations.


Cytochrome P450 (CYP) Inhibition Induction 



The authors wish to thank the following sources for support to their research: The Academy of Finland, the Finnish Funding Agency for Technological Research and Innovation (TEKES), The EU COST Programme (COST B15 and COST B25).


  1. Abdel-Rahman SM, Marcucci K, Boge T et al (1999) Potent inhibition of cytochrome P-450 2D6-mediated dextromethorphan O-demethylation by terbinafine. Drug Metab Dispos 27:770–775PubMedGoogle Scholar
  2. Abelö A, Andersson TB, Antonsson M et al (2000) Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab Dispos 28:966–972PubMedGoogle Scholar
  3. Agarwal S, Holton KL, Lanza R (2008) Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells. doi: 10.1634/stemcells.2007-1102
  4. Aithal GP, Day CP, Kesteven PJ et al (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 27:717–719CrossRefGoogle Scholar
  5. Allqvist A, Miura J, Bertilsson L et al (2007) Inhibition of CYP3A4 and CYP3A5 catalyzed metabolism of alprazolam and quinine by ketoconazole as racemate and four different enantiomers. Eur J Clin Pharmacol 63:173–179PubMedCrossRefGoogle Scholar
  6. Amet Y, Berthou F, Baird S et al (1995) Validation of the (omega-1)-hydroxylation of lauric acid as an in vitro substrate probe for human liver CYP2E1. Biochem Pharmacol 50:1775–1782PubMedCrossRefGoogle Scholar
  7. Andersson T, Miners JO, Veronese ME et al (1993) Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br J Clin Pharmacol 36:521–530PubMedGoogle Scholar
  8. Andersson T, Miners JO, Veronese ME et al (1994) Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 38:131–137PubMedGoogle Scholar
  9. Anglicheau D, Flamant M, Schlageter MH et al (2003) Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant 18:2409–2414PubMedCrossRefGoogle Scholar
  10. Aninat C, Piton A, Glaise D et al (2006) Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos 34:75–83PubMedCrossRefGoogle Scholar
  11. Antoniou T, Tseng AL (2005) Interactions between antiretrovirals and antineoplastic drug therapy. Clin Pharmacokinet 44:111–145PubMedCrossRefGoogle Scholar
  12. Aoyama T, Yamano S, Guzelian PS et al (1990) Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1. Proc Natl Acad Sci USA 87:4790–4793PubMedCrossRefGoogle Scholar
  13. Arpiainen S, Raffalli-Mathieu F, Lang MA et al (2005) Regulation of the Cyp2a5 gene involves an aryl hydrocarbon receptor-dependent pathway. Mol Pharmacol 67:1325–1333PubMedCrossRefGoogle Scholar
  14. Arulmozhiraja S, Morita M (2004) Structure-activity relationships for the toxicity of polychlorinated dibenzofurans: approach through density functional theory-based descriptors. Chem Res Toxicol 17:348–356PubMedCrossRefGoogle Scholar
  15. Asimus S, Elsherbiny D, Hai TN et al (2007) Artemisinin antimalarials moderately affect cytochrome P450 enzyme activity in healthy subjects. Fundam Clin Pharmacol 21:307–316PubMedCrossRefGoogle Scholar
  16. Asimus S, Hai TN, Van Huong N et al (2008) Artemisinin and CYP2A6 activity in healthy subjects. Eur J Clin Pharmacol 64:283–292PubMedCrossRefGoogle Scholar
  17. Attar M, Dong D, Ling KH et al (2003) Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans. Drug Metab Dispos 31:476–481PubMedCrossRefGoogle Scholar
  18. Azuma H, Paulk N, Ranade A et al (2007) Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 25:903–910PubMedCrossRefGoogle Scholar
  19. Bäärnhielm C, Backman A, Hoffmann KJ et al (1986) Biotransformation of felodipine in liver microsomes from rat, dog, and man. Drug Metab Dispos 14:613–618PubMedGoogle Scholar
  20. Bachmann K, White D, Jauregui L et al (2003) An evaluation of the dose-dependent inhibition of CYP1A2 by rofecoxib using theophylline as a CYP1A2 probe. J Clin Pharmacol 43:1082–1090PubMedCrossRefGoogle Scholar
  21. Back DJ, Houlgrave R, Tjia JF et al (1991) Effect of the progestogens, gestodene, 3-keto desogestrel, levonorgestrel, norethisterone and norgestimate on the oxidation of ethinyloestradiol and other substrates by human liver microsomes. J Steroid Biochem Mol Biol 38:219–225PubMedCrossRefGoogle Scholar
  22. Back DJ, Tjia JF, Karbwang J et al (1988) In vitro inhibition studies of tolbutamide hydroxylase activity of human liver microsomes by azoles, sulphonamides and quinolines. Br J Clin Pharmacol 26:23–29PubMedGoogle Scholar
  23. Back DJ, Tjia JF (1991) Comparative effects of the antimycotic drugs ketoconazole, fluconazole, itraconazole and terbinafine on the metabolism of cyclosporin by human liver microsomes. Br J Clin Pharmacol 32:624–626PubMedGoogle Scholar
  24. Backman JT, Olkkola KT, Neuvonen PJ (1996) Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 59:7–13PubMedCrossRefGoogle Scholar
  25. Backman JT, Granfors MT, Neuvonen PJ (2006a) Rifampicin is only a weak inducer of CYP1A2-mediated presystemic and systemic metabolism: studies with tizanidine and caffeine. Eur J Clin Pharmacol 62:451–461PubMedCrossRefGoogle Scholar
  26. Backman JT, Karjalainen MJ, Neuvonen M et al (2006b) Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. Br J Clin Pharmacol 62:345–357PubMedCrossRefGoogle Scholar
  27. Balbisi EA (2006) Frovatriptan: a review of pharmacology, pharmacokinetics and clinical potential in the treatment of menstrual migraine. Ther Clin Risk Manag 2:303–308PubMedCrossRefGoogle Scholar
  28. Baldwin SJ, Bloomer JC, Smith GJ et al (1995) Ketoconazole and sulphaphenazole as the respective selective inhibitors of P4503A and 2C9. Xenobiotica 25:261–270PubMedGoogle Scholar
  29. Baldwin SJ, Clarke SE, Chenery RJ (1999) Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 48:424–432PubMedCrossRefGoogle Scholar
  30. Barditch-Crovo P, Trapnell CB, Ette E et al (1999) The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 65:428–438PubMedCrossRefGoogle Scholar
  31. Becquemont L, Le Bot MA, Riche C et al (1998) Use of heterologously expressed human cytochrome P450 1A2 to predict tacrine–fluvoxamine drug interaction in man. Pharmacogenetics 8:101–108PubMedCrossRefGoogle Scholar
  32. Behnisch PA, Hosoe K, Sakai S (2001) Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology. Environ Int 27:413–439PubMedCrossRefGoogle Scholar
  33. Benowitz NL, Peng M, Jacob P 3rd (2003) Effects of cigarette smoking and carbon monoxide on chlorzoxazone and caffeine metabolism. Clin Pharmacol Ther 74:468–474PubMedCrossRefGoogle Scholar
  34. Benowitz NL, Lessov-Schlaggar CN, Swan GE et al (2006) Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 79:480–488PubMedCrossRefGoogle Scholar
  35. Berlin I, Gasior MJ, Moolchan ET (2007) Sex-based and hormonal contraception effects on the metabolism of nicotine among adolescent tobacco-dependent smokers. Nicotine Tob Res 9:493–498PubMedCrossRefGoogle Scholar
  36. Bertilsson G, Heidrich J, Svensson K et al (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 95:12208–12213PubMedCrossRefGoogle Scholar
  37. Bertilsson L, Carrillo JA, Dahl ML et al (1994) Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br J Clin Pharmacol 38:471–473PubMedGoogle Scholar
  38. Bertilsson L (1995) Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 29:192–209PubMedGoogle Scholar
  39. Bidstrup TB, Bjørnsdottir I, Sidelmann UG et al (2003) CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 56:305–314PubMedCrossRefGoogle Scholar
  40. Bidstrup TB, Stilling N, Damkier P et al (2004) Rifampicin seems to act as both an inducer and an inhibitor of the metabolism of repaglinide. Eur J Clin Pharmacol 60:109–114PubMedCrossRefGoogle Scholar
  41. Birkett DJ, Miners JO, Attwood J (1983) Evidence for a dual action of sulphinpyrazone on drug metabolism in man: theophylline-sulphinpyrazone interaction. Br J Clin Pharmacol 15:567–569PubMedGoogle Scholar
  42. Birkett DJ, Rees D, Andersson T et al (1994) In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Br J Clin Pharmacol 37:413–420PubMedGoogle Scholar
  43. Bjeldanes LF, Kim JY, Grose KR et al (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA 88:9543–9547PubMedCrossRefGoogle Scholar
  44. Bjornsson TD, Callaghan JT, Einolf HJ et al (2003) The conduct of in vitro and in vivo drug–drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815–832PubMedCrossRefGoogle Scholar
  45. Bloomer JC, Clarke SE, Chenery RJ (1997) In vitro identification of the P450 enzymes responsible for the metabolism of ropinirole. Drug Metab Dispos 25:840–844PubMedGoogle Scholar
  46. Blumberg B, Sabbagh W Jr, Juguilon H et al (1998) SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 12:3195–3205PubMedCrossRefGoogle Scholar
  47. Bodin K, Bretillon L, Aden Y et al (2001) Antiepileptic drugs increase plasma levels of 4β-hydroxycholesterol in humans: evidence for involvement of cytochrome P450 3A4. J Biol Chem 276:38685–38689PubMedCrossRefGoogle Scholar
  48. Bodin K, Lindbom U, Diczfalusy U (2005) Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 1687:84–93PubMedGoogle Scholar
  49. Boobis AR, Murray S, Kahn GC et al (1983) Substrate specificity of the form of cytochrome P-450 catalyzing the 4-hydroxylation of debrisoquine in man. Mol Pharmacol 23:474–481PubMedGoogle Scholar
  50. Boobis AR, Lynch AM, Murray S et al (1994) CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer Res 54:89–94PubMedGoogle Scholar
  51. Bourrié M, Meunier V, Berger Y et al (1996) Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J Pharmacol Exp Ther 277:321–332PubMedGoogle Scholar
  52. Brady JF, Xiao F, Wang MH et al (1991a) Effects of disulfiram on hepatic P450IIE1, other microsomal enzymes, and hepatotoxicity in rats. Toxicol Appl Pharmacol 108:366–373PubMedCrossRefGoogle Scholar
  53. Brady JF, Ishizaki H, Fukuto JM et al (1991b) Inhibition of cytochrome P-450 2E1 by diallyl sulfide and its metabolites. Chem Res Toxicol 4:642–647PubMedCrossRefGoogle Scholar
  54. Broly F, Libersa C, Lhermitte M et al (1989) Effect of quinidine on the dextromethorphan O-demethylase activity of microsomal fractions from human liver. Br J Clin Pharmacol 28:29–36PubMedGoogle Scholar
  55. Brosen K, Skjelbo E, Rasmussen BB et al (1993) Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 45:1211–1214PubMedCrossRefGoogle Scholar
  56. Brown CM, Reisfeld B, Mayeno AN (2008) Cytochromes P450: a structure-based summary of biotransformations using representative substrates. Drug Metab Rev 40:1–100PubMedCrossRefGoogle Scholar
  57. Buchan P, Wade A, Ward C et al (2002) Frovatriptan: a review of drug–drug interactions. Headache 42(suppl 2):S63–S73PubMedCrossRefGoogle Scholar
  58. Buchthal J, Grund KE, Buchmann A et al (1995) Induction of cytochrome P4501A by smoking or omeprazole in comparison with UDP-glucuronosyltransferase in biopsies of human duodenal mucosa. Eur J Clin Pharmacol 47:431–435PubMedCrossRefGoogle Scholar
  59. Burk O, Koch I, Raucy J et al (2004) The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J Biol Chem 279:38379–38385PubMedCrossRefGoogle Scholar
  60. Burk O, Wojnowski L (2004) Cytochrome P450 3A and their regulation. Naunyn Schmiedebergs Arch Pharmacol 369:105–124PubMedCrossRefGoogle Scholar
  61. Burke MD, Thompson S, Elcombe CR et al (1985) Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem Pharmacol 34:3337–3345PubMedCrossRefGoogle Scholar
  62. Busi F, Cresteil T (2005) CYP3A5 mRNA degradation by nonsense-mediated mRNA decay. Mol Pharmacol 68:808–815PubMedGoogle Scholar
  63. Butler MA, Iwasaki M, Guengerich FP et al (1989) Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci USA 86:7696–7700PubMedCrossRefGoogle Scholar
  64. Cai J, Zhao Y, Liu Y et al (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45:1229–1239PubMedCrossRefGoogle Scholar
  65. Campard D, Lysy PA, Najimi M et al (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134:833–848PubMedCrossRefGoogle Scholar
  66. Campbell ME, Grant DM, Inaba T et al (1987) Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Drug Metab Dispos 15:237–249PubMedGoogle Scholar
  67. Carlile DJ, Hakooz N, Bayliss MK et al (1999) Microsomal prediction of in vivo clearance of CYP2C9 substrates in humans. Br J Clin Pharmacol 47:625–635PubMedCrossRefGoogle Scholar
  68. Carlson DB, Perdew GH (2002) A dynamic role for the Ah receptor in cell signaling? Insights from a diverse group of Ah receptor interacting proteins. J Biochem Mol Toxicol 16:317–325PubMedCrossRefGoogle Scholar
  69. Caro AA, Cederbaum AI (2004) Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol 44:27–42PubMedCrossRefGoogle Scholar
  70. Carroccio A, Wu D, Cederbaum AI (1994) Ethanol increases content and activity of human cytochrome P4502E1 in a transduced HepG2 cell line. Biochem Biophys Res Commun 203:727–733PubMedCrossRefGoogle Scholar
  71. Cashman JR, Park SB, Yang ZC et al (1992) Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N′-oxide. Chem Res Toxicol 5:639–646PubMedCrossRefGoogle Scholar
  72. Cederbaum AI (2006) CYP2E1—biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt Sinai J Med 73:657–672PubMedGoogle Scholar
  73. Chang SM, Kuhn JG, Rizzo J et al (1998) Phase I study of paclitaxel in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. J Clin Oncol 16:2188–2194PubMedGoogle Scholar
  74. Chang TK, Gonzalez FJ, Waxman DJ (1994) Evaluation of triacetyloleandomycin, alpha-naphthoflavone and diethyldithiocarbamate as selective chemical probes for inhibition of human cytochromes P450. Arch Biochem Biophys 311:437–442PubMedCrossRefGoogle Scholar
  75. Chang TK, Chen J, Pillay V et al (2003) Real-time polymerase chain reaction analysis of CYP1B1 gene expression in human liver. Toxicol Sci 71:11–19PubMedCrossRefGoogle Scholar
  76. Chang TK, Waxman DJ (2006) Synthetic drugs and natural products as modulators of constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Drug Metab Rev 38:51–73PubMedCrossRefGoogle Scholar
  77. Cheng YW, Chen CY, Lin P et al (2000) DNA adduct level in lung tissue may act as a risk biomarker of lung cancer. Eur J Cancer 36:1381–1388PubMedCrossRefGoogle Scholar
  78. Chiba K, Kobayashi K, Manabe K et al (1993) Oxidative metabolism of omeprazole in human liver microsomes: cosegregation with S-mephenytoin 4'-hydroxylation. J Pharmacol Exp Ther 266:52–59PubMedGoogle Scholar
  79. Chiba M, Hensleigh M, Nishime JA et al (1996) Role of cytochrome P450 3A4 in human metabolism of MK-639, a potent human immunodeficiency virus protease inhibitor. Drug Metab Dispos 24:307–314PubMedGoogle Scholar
  80. Chien JY, Peter RM, Nolan CM et al (1997) Influence of polymorphic N-acetyltransferase phenotype on the inhibition and induction of acetaminophen bioactivation with long-term isoniazid. Clin Pharmacol Ther 61:24–34PubMedCrossRefGoogle Scholar
  81. Chou CH, Evans AM, Fornasini G et al (1993) Relationship between lipophilicity and hepatic dispersion and distribution for a homologous series of barbiturates in the isolated perfused in situ rat liver. Drug Metab Dispos 21:933–938PubMedGoogle Scholar
  82. Christian K, Lang M, Maurel P et al (2004) Interaction of heterogeneous nuclear ribonucleoprotein A1 with cytochrome P450 2A6 mRNA: implications for post-transcriptional regulation of the CYP2A6 gene. Mol Pharmacol 65:1405–1414PubMedCrossRefGoogle Scholar
  83. Christians U, Strohmeyer S, Kownatzki R et al (1991) Investigations on the metabolic pathways of cyclosporine: II. Elucidation of the metabolic pathways in vitro by human liver microsomes. Xenobiotica 21:1199–1210PubMedGoogle Scholar
  84. Clarke SE, Ayrton AD, Chenery RJ (1994a) Characterization of the inhibition of P4501A2 by furafylline. Xenobiotica 24:517–526PubMedGoogle Scholar
  85. Clarke SE, Baldwin SJ, Bloomer JC et al (1994b) Lauric acid as a model substrate for the simultaneous determination of cytochrome P450 2E1 and 4A in hepatic microsomes. Chem Res Toxicol 7:836–842PubMedCrossRefGoogle Scholar
  86. Code EL, Crespi CL, Penman BW et al (1997) Human cytochrome P4502B6: interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab Dispos 25:985–993PubMedGoogle Scholar
  87. Coller JK, Somogyi AA, Bochner F (1999) Comparison of (S)-mephenytoin and proguanil oxidation in vitro: contribution of several CYP isoforms. Br J Clin Pharmacol 48:158–167PubMedCrossRefGoogle Scholar
  88. Cook CS, Berry LM, Burton E (2004) Prediction of in vivo drug interactions with eplerenone in man from in vitro metabolic inhibition data. Xenobiotica 34:215–228PubMedCrossRefGoogle Scholar
  89. Court MH, Duan SX, Hesse LM et al (2001) Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 94:110–119PubMedCrossRefGoogle Scholar
  90. Cresteil T, Monsarrat B, Alvinerie P et al (1994) Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res 54:386–392PubMedGoogle Scholar
  91. Crewe HK, Lennard MS, Tucker GT et al (1992) The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 34:262–265PubMedGoogle Scholar
  92. Cvetkovic M, Leake B, Fromm MF et al (1999) OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 27:866–871PubMedGoogle Scholar
  93. Dahl ML (2002) Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 41:453–470PubMedCrossRefGoogle Scholar
  94. Dahlqvist R, Steiner E, Koike Y et al (1989) Induction of theophylline metabolism by pentobarbital. Ther Drug Monit 11:408–410PubMedGoogle Scholar
  95. Dai D, Zeldin DC, Blaisdell JA et al (2001) Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11:597–607PubMedCrossRefGoogle Scholar
  96. Dai Y, Hebert MF, Isoherranen N et al (2006) Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 34:836–847PubMedCrossRefGoogle Scholar
  97. Dailly E, Tribut O, Tattevin P et al (2006) Influence of tenofovir, nevirapine and efavirenz on ritonavir-boosted atazanavir pharmacokinetics in HIV-infected patients. Eur J Clin Pharmacol 62:523–526PubMedCrossRefGoogle Scholar
  98. Daly AK, King BP (2003) Pharmacogenetics of oral anticoagulants. Pharmacogenetics 13:247–252PubMedCrossRefGoogle Scholar
  99. Darwish M, Kirby M, Robertson P Jr et al (2008) Interaction profile of armodafinil with medications metabolized by cytochrome P450 enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin Pharmacokinet 47:61–74PubMedGoogle Scholar
  100. Dayer P, Desmeules J, Leemann T et al (1988) Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). Biochem Biophys Res Commun 152:411–416PubMedCrossRefGoogle Scholar
  101. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 37:485–505PubMedCrossRefGoogle Scholar
  102. Dempsey D, Jacob P 3rd, Benowitz NL (2002) Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther 301:594–598PubMedCrossRefGoogle Scholar
  103. Dennison JB, Kulanthaivel P, Barbuch RJ et al (2006) Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab Dispos 34:1317–1327PubMedCrossRefGoogle Scholar
  104. Depre M, Van Hecken A, Oeyen M et al (2005) Effect of aprepitant on the pharmacokinetics and pharmacodynamics of warfarin. Eur J Clin Pharmacol 61:341–346PubMedCrossRefGoogle Scholar
  105. Desai PB, Duan JZ, Zhu YW et al (1998) Human liver microsomal metabolism of paclitaxel and drug interactions. Eur J Drug Metab Pharmacokinet 23:417–424PubMedGoogle Scholar
  106. Desta Z, Zhao X, Shin JG et al (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41:913–958PubMedCrossRefGoogle Scholar
  107. Desta Z, Saussele T, Ward B et al (2007) Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics 8:547–558PubMedCrossRefGoogle Scholar
  108. Dickinson RG, Hooper WD, Patterson M et al (1985) Extent of urinary excretion of p-hydroxyphenytoin in healthy subjects given phenytoin. Ther Drug Monit 7:283–289PubMedCrossRefGoogle Scholar
  109. Diczfalusy U, Miura J, Roh HK et al (2008) 4Beta-hydroxycholesterol is a new endogenous CYP3A marker: relationship to CYP3A5 genotype, quinine 3-hydroxylation and sex in Koreans, Swedes and Tanzanians. Pharmacogenet Genomics 18:201–208PubMedCrossRefGoogle Scholar
  110. Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173PubMedCrossRefGoogle Scholar
  111. Dingemanse J, van Giersbergen PL (2004) Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacokinet 43:1089–1115PubMedCrossRefGoogle Scholar
  112. Distlerath LM, Reilly PE, Martin MV et al (1985) Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J Biol Chem 260:9057–9067PubMedGoogle Scholar
  113. Djordjevic N, Ghotbi R, Bertilsson L et al (2008) Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol 64:381–385PubMedCrossRefGoogle Scholar
  114. Doecke CJ, Veronese ME, Pond SM et al (1991) Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes. Br J Clin Pharmacol 31:125–130PubMedGoogle Scholar
  115. Dolwick KM, Schmidt JV, Carver LA et al (1993) Cloning and expression of a human Ah receptor cDNA. Mol Pharmacol 44:911–917PubMedGoogle Scholar
  116. Donato MT, Viitala P, Rodriguez-Antona C et al (2000) CYP2A5/CYP2A6 expression in mouse and human hepatocytes treated with various in vivo inducers. Drug Metab Dispos 28:1321–1326PubMedGoogle Scholar
  117. Donato MT, Lahoz A, Castell JV et al (2008) Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab 9:1–11PubMedCrossRefGoogle Scholar
  118. Draper AJ, Madan A, Parkinson A (1997) Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. Arch Biochem Biophys 341:47–61PubMedCrossRefGoogle Scholar
  119. Dresser GK, Bailey DG, Leake BF et al (2002) Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther 71:11–20PubMedCrossRefGoogle Scholar
  120. Eagling VA, Back DJ, Barry MG (1997) Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 44:190–194PubMedCrossRefGoogle Scholar
  121. Edwards RJ, Price RJ, Watts PS et al (2003) Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos 31:282–288PubMedCrossRefGoogle Scholar
  122. Eichelbaum M, Ingelman-Sundberg M, Evans WE (2006) Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:119–137PubMedCrossRefGoogle Scholar
  123. Ek M, Söderdahl T, Küppers-Munther B et al (2007) Expression of drug metabolizing enzymes in hepatocyte-like cells derived from human embryonic stem cells. Biochem Pharmacol 74:496–503PubMedCrossRefGoogle Scholar
  124. Ekins S, Erickson JA (2002) A pharmacophore for human pregnane X receptor ligands. Drug Metab Dispos 30:96–99PubMedCrossRefGoogle Scholar
  125. Ekins S, Mirny L, Schuetz EG (2002) A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRalpha, and LXRbeta. Pharm Res 19:1788–1800PubMedCrossRefGoogle Scholar
  126. Ekins S, Stresser DM, Williams JA (2003) In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol Sci 24:161–166PubMedCrossRefGoogle Scholar
  127. Ekins S, Andreyev S, Ryabov A et al (2006) A combined approach to drug metabolism and toxicity assessment. Drug Metab Dispos 34:495–503PubMedGoogle Scholar
  128. Ekins S, Chang C, Mani S et al (2007) Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites. Mol Pharmacol 72:592–603PubMedCrossRefGoogle Scholar
  129. Ekström G, Gunnarsson UB (1996) Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes. Drug Metab Dispos 24:955–961PubMedGoogle Scholar
  130. Elkayam T, Amitay-Shaprut S, Dvir-Ginzberg M et al (2006) Enhancing the drug metabolism activities of C3A—a human hepatocyte cell line—by tissue engineering within alginate scaffolds. Tissue Eng 12:1357–1368PubMedCrossRefGoogle Scholar
  131. El-Sankary W, Gibson GG, Ayrton A et al (2001) Use of a reporter gene assay to predict and rank the potency and efficacy of CYP3A4 inducers. Drug Metab Dispos 29:1499–1504PubMedGoogle Scholar
  132. Elsherbiny DA, Asimus SA, Karlsson MO et al (2008) A model based assessment of the CYP2B6 and CYP2C19 inductive properties by artemisinin antimalarials: implications for combination regimens. J Pharmacokinet Pharmacodyn. doi: 10.1007/s10928-008-9084-6
  133. Emoto C, Yamato Y, Sato Y et al (2008) Non-invasive method to detect induction of CYP3A4 in chimeric mice with a humanized liver. Xenobiotica 38:239–248PubMedCrossRefGoogle Scholar
  134. Endo T, Ban M, Hirata K et al (2007) Involvement of CYP2A6 in the formation of a novel metabolite, 3-hydroxypilocarpine, from pilocarpine in human liver microsomes. Drug Metab Dispos 35:476–483PubMedCrossRefGoogle Scholar
  135. Eriksson UG, Lundahl J, Bäärnhielm C et al (1991) Stereoselective metabolism of felodipine in liver microsomes from rat, dog, and human. Drug Metab Dispos 19:889–894PubMedGoogle Scholar
  136. Ernest CS 2nd, Hall SD, Jones DR (2005) Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther 312:583–591PubMedCrossRefGoogle Scholar
  137. Evans DC, O’Connor D, Lake BG et al (2003) Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. Drug Metab Dispos 31:861–869PubMedCrossRefGoogle Scholar
  138. Faber MS, Jetter A, Fuhr U (2005) Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol 97:125–134PubMedCrossRefGoogle Scholar
  139. Facciolá G, Hidestrand M, von Bahr C et al (2001) Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. Eur J Clin Pharmacol 56:881–888PubMedCrossRefGoogle Scholar
  140. Fang J, Coutts RT, McKenna KF et al (1998) Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch Pharmacol 358:592–599PubMedCrossRefGoogle Scholar
  141. Faucette SR, Hawke RL, Lecluyse EL et al (2000) Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 28:1222–1230PubMedGoogle Scholar
  142. Faucette SR, Zhang TC, Moore R et al (2007) Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J Pharmacol Exp Ther 320:72–80PubMedCrossRefGoogle Scholar
  143. Fellay J, Marzolini C, Decosterd L et al (2005) Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients. Eur J Clin Pharmacol 60:865–873PubMedCrossRefGoogle Scholar
  144. Fetell MR, Grossman SA, Fisher JD et al (1997) Preirradiation paclitaxel in glioblastoma multiforme: efficacy, pharmacology, and drug interactions. New approaches to brain tumor therapy central nervous system consortium. J Clin Oncol 15:3121–3128PubMedGoogle Scholar
  145. Fontana RJ, Lown KS, Paine MF et al (1999) Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers. Gastroenterology 117:89–98PubMedCrossRefGoogle Scholar
  146. Forman BM, Tzameli I, Choi HS et al (1998) Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature 395:612–615PubMedCrossRefGoogle Scholar
  147. Frank C, Molnár F, Matilainen M et al (2004) Agonist-dependent and agonist-independent transactivations of the human constitutive androstane receptor are modulated by specific amino acid pairs. J Biol Chem 279:33558–33566PubMedCrossRefGoogle Scholar
  148. Friedman MA, Woodcock J, Lumpkin MM et al (1999) The safety of newly approved medicines: do recent market removals mean there is a problem? JAMA 281:1728–1734PubMedCrossRefGoogle Scholar
  149. Fuhr U, Wolff T, Harder S et al (1990) Quinolone inhibition of cytochrome P-450-dependent caffeine metabolism in human liver microsomes. Drug Metab Dispos 18:1005–1010PubMedGoogle Scholar
  150. Fujita K (2004) Food–drug interactions via human cytochrome P450 3A (CYP3A). Drug Metabol Drug Interact 20:195–217PubMedGoogle Scholar
  151. Fukuda I, Nishiumi S, Yabushita Y et al (2004) A new southwestern chemistry-based ELISA for detection of aryl hydrocarbon receptor transformation: application to the screening of its receptor agonists and antagonists. J Immunol Methods 287:187–201PubMedCrossRefGoogle Scholar
  152. Funck-Brentano C, Becquemont L, Lenevu A et al (1997) Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharmacol Exp Ther 280:730–738PubMedGoogle Scholar
  153. Furster C, Wikvall K (1999) Identification of CYP3A4 as the major enzyme responsible for 25-hydroxylation of 5β-cholestane-3α, 7α, 12α-triol in human liver microsomes. Biochim Biophys Acta 1437:46–52PubMedGoogle Scholar
  154. Galetin A, Clarke SE, Houston JB (2003) Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: midazolam, testosterone, and nifedipine. Drug Metab Dispos 31:1108–1116PubMedCrossRefGoogle Scholar
  155. Galetin A, Burt H, Gibbons L et al (2006) Prediction of time-dependent CYP3A4 drug–drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metab Dispos 34:166–175PubMedCrossRefGoogle Scholar
  156. Galteau MM, Shamsa F (2003) Urinary 6β-hydroxycortisol: a validated test for evaluating drug induction or drug inhibition mediated through CYP3A in humans and in animals. Eur J Clin Pharmacol 59:713–733PubMedCrossRefGoogle Scholar
  157. Garcia M, Rager J, Wang Q et al (2003) Cryopreserved human hepatocytes as alternative in vitro model for cytochrome P450 induction studies. In Vitro Cell Dev Biol Anim 39:283–287PubMedCrossRefGoogle Scholar
  158. Gebhardt AC, Lucas D, Ménez JF et al (1997) Chlormethiazole inhibition of cytochrome P450 2E1 as assessed by chlorzoxazone hydroxylation in humans. Hepatology 26:957–961PubMedCrossRefGoogle Scholar
  159. Ghanbari F, Rowland-Yeo K, Bloomer JC et al (2006) A critical evaluation of the experimental design of studies of mechanism based enzyme inhibition, with implications for in vitro–in vivo extrapolation. Curr Drug Metab 7:315–334PubMedCrossRefGoogle Scholar
  160. Giancarlo GM, Venkatakrishnan K, Granda BW et al (2001) Relative contributions of CYP2C9 and 2C19 to phenytoin 4-hydroxylation in vitro: inhibition by sulfaphenazole, omeprazole, and ticlopidine. Eur J Clin Pharmacol 57:31–36PubMedCrossRefGoogle Scholar
  161. Girre C, Lucas D, Hispard E et al (1994) Assessment of cytochrome P4502E1 induction in alcoholic patients by chlorzoxazone pharmacokinetics. Biochem Pharmacol 47:1503–1508PubMedCrossRefGoogle Scholar
  162. Glaeser H, Drescher S, Eichelbaum M et al (2005) Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes. Br J Clin Pharmacol 59:199–206PubMedCrossRefGoogle Scholar
  163. Goldberg MR, Lo MW, Deutsch PJ et al (1996) Phenobarbital minimally alters plasma concentrations of losartan and its active metabolite E-3174. Clin Pharmacol Ther 59:268–274PubMedCrossRefGoogle Scholar
  164. Gómez-Lechón MJ, Donato T, Jover R et al (2001) Expression and induction of a large set of drug-metabolizing enzymes by the highly differentiated human hepatoma cell line BC2. Eur J Biochem 268(5):1448–1459PubMedCrossRefGoogle Scholar
  165. Gómez-Lechón MJ, Donato MT, Castell JV et al (2003) Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 4:292–312PubMedCrossRefGoogle Scholar
  166. Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 569:101–110PubMedGoogle Scholar
  167. Goodwin B, Hodgson E, Liddle C (1999) The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 56:1329–1339PubMedGoogle Scholar
  168. Goodwin B, Moore LB, Stoltz CM et al (2001) Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol Pharmacol 60:427–431PubMedGoogle Scholar
  169. Gorski JC, Jones DR, Hamman MA et al (1999) Biotransformation of alprazolam by members of the human cytochrome P4503A subfamily. Xenobiotica 29:931–944PubMedCrossRefGoogle Scholar
  170. Granfors MT, Backman JT, Laitila J et al (2004) Tizanidine is mainly metabolized by cytochrome p450 1A2 in vitro. Br J Clin Pharmacol 57:349–353PubMedCrossRefGoogle Scholar
  171. Gripon P, Rumin S, Urban S et al (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA 99:15655–15660PubMedCrossRefGoogle Scholar
  172. Gu CG, Jiang X, Ju XH et al (2007) DFT study on the structure-toxicity relationship of dioxin compounds using PLS analysis. SAR QSAR Environ Res 18:603–619PubMedCrossRefGoogle Scholar
  173. Guengerich FP, Müller-Enoch D, Blair IA (1986) Oxidation of quinidine by human liver cytochrome P-450. Mol Pharmacol 30:287–295PubMedGoogle Scholar
  174. Guengerich FP (1990) Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem Res Toxicol 3:363–371PubMedCrossRefGoogle Scholar
  175. Guengerich FP, Kim DH, Iwasaki M (1991) Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168–179PubMedCrossRefGoogle Scholar
  176. Guengerich FP, Wu Z, Bartleson CJ (2005) Function of human cytochrome P450s: characterisation of the orphans. Biochem Biophys Res Commun 338:465–469PubMedCrossRefGoogle Scholar
  177. Guengerich FP (2008) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21:70–83PubMedCrossRefGoogle Scholar
  178. Gurley BJ, Gardner SF, Hubbard MA et al (2002) Cytochrome P450 phenotypic ratios for predicting herb–drug interactions in humans. Clin Pharmacol Ther 72:276–287PubMedCrossRefGoogle Scholar
  179. Gurley BJ, Gardner SF, Hubbard MA et al (2005) Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John’s wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 22:525–539PubMedCrossRefGoogle Scholar
  180. Ha-Duong NT, Dijols S, Macherey AC et al (2001) Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19. Biochemistry 40:12112–12122PubMedCrossRefGoogle Scholar
  181. Hakkola J, Pelkonen O, Pasanen M et al (1998) Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 28:35–72PubMedCrossRefGoogle Scholar
  182. Hakkola J, Raunio H, Purkunen R et al (2001) Cytochrome P450 3A expression in the human fetal liver: evidence that CYP3A5 is expressed in only a limited number of fetal livers. Biol Neonate 80:193–201PubMedCrossRefGoogle Scholar
  183. Hall SD, Thummel KE, Watkins PB et al (1999) Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos 27:161–166PubMedGoogle Scholar
  184. Halpert JR (1995) Structural basis of selective cytochrome P450 inhibition. Annu Rev Pharmacol Toxicol 35:29–53PubMedCrossRefGoogle Scholar
  185. Hamman MA, Thompson GA, Hall SD (1997) Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol 54:33–41PubMedCrossRefGoogle Scholar
  186. Hanaoka T, Yamano Y, Pan G et al (2002) Cytochrome P450 1B1 mRNA levels in peripheral blood cells and exposure to polycyclic aromatic hydrocarbons in Chinese coke oven workers. Sci Total Environ 296:27–33PubMedCrossRefGoogle Scholar
  187. Hargreaves MB, Jones BC, Smith DA et al (1994) Inhibition of p-nitrophenol hydroxylase in rat liver microsomes by small aromatic and heterocyclic molecules. Drug Metab Dispos 22:806–810PubMedGoogle Scholar
  188. Hariparsad N, Carr BA, Evers R et al (2008) Comparison of immortalized Fa2N-4 cells and human hepatocytes as in vitro models for cytochrome P450 induction. Drug Metab Dispos. doi: 10.1124/dmd.108.020677
  189. Harleton E, Webster M, Bumpus NN et al (2004) Metabolism of N, N′, N″-triethylenethiophosphoramide by CYP2B1 and CYP2B6 results in the inactivation of both isoforms by two distinct mechanisms. J Pharmacol Exp Ther 310:1011–1019PubMedCrossRefGoogle Scholar
  190. Hartley DP, Dai X, Yabut J et al (2006) Identification of potential pharmacological and toxicological targets differentiating structural analogs by a combination of transcriptional profiling and promoter analysis in LS-180 and Caco-2 adenocarcinoma cell lines. Pharmacogenet Genomics 16:579–599PubMedCrossRefGoogle Scholar
  191. Härtter S, Wang X, Weigmann H et al (2001) Differential effects of fluvoxamine and other antidepressants on the biotransformation of melatonin. J Clin Psychopharmacol 21:167–174PubMedCrossRefGoogle Scholar
  192. He N, Edeki T (2004) The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am J Ther 11:206–212PubMedCrossRefGoogle Scholar
  193. Hecht SS (1999) DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res 424:127–142PubMedGoogle Scholar
  194. Heimark LD, Wienkers L, Kunze K et al (1992) The mechanism of the interaction between amiodarone and warfarin in humans. Clin Pharmacol Ther 51:398–407PubMedGoogle Scholar
  195. Heinemeyer G, Gramm HJ, Simgen W et al (1987) Kinetics of hexobarbital and dipyrone in critical care patients receiving high-dose pentobarbital. Eur J Clin Pharmacol 32:273–277PubMedCrossRefGoogle Scholar
  196. Hengstler JG, Utesch D, Steinberg P et al (2000) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118PubMedCrossRefGoogle Scholar
  197. Herman D, Locatelli I, Grabnar I et al (2006) The influence of co-treatment with carbamazepine, amiodarone and statins on warfarin metabolism and maintenance dose. Eur J Clin Pharmacol 62:291–296PubMedCrossRefGoogle Scholar
  198. Hesse LM, Venkatakrishnan K, Court MH et al (2000) CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos 28:1176–1183PubMedGoogle Scholar
  199. Hewitt NJ, Hewitt P (2004) Phase I and II enzyme characterization of two sources of HepG2 cell lines. Xenobiotica 34:243–256PubMedCrossRefGoogle Scholar
  200. Hewitt NJ, Lechón MJ, Houston JB et al (2007a) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234PubMedCrossRefGoogle Scholar
  201. Hewitt NJ, de Kanter R, LeCluyse E (2007b) Induction of drug metabolizing enzymes: a survey of in vitro methodologies and interpretations used in the pharmaceutical industry—do they comply with FDA recommendations? Chem Biol Interact 168:51–65PubMedCrossRefGoogle Scholar
  202. Hewitt NJ, Lecluyse EL, Ferguson SS (2007c) Induction of hepatic cytochrome P450 enzymes: methods, mechanisms, recommendations, and in vitro–in vivo correlations. Xenobiotica 37:1196–1224PubMedCrossRefGoogle Scholar
  203. Higashi E, Fukami T, Itoh M et al (2007a) Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab Dispos 35:1935–1941PubMedCrossRefGoogle Scholar
  204. Higashi E, Nakajima M, Katoh M et al (2007b) Inhibitory effects of neurotransmitters and steroids on human CYP2A6. Drug Metab Dispos 35:508–514PubMedCrossRefGoogle Scholar
  205. Hijazi Y, Boulieu R (2002) Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858PubMedCrossRefGoogle Scholar
  206. Hines RN, McCarver DG (2002) The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 300:355–360PubMedCrossRefGoogle Scholar
  207. Hollenberg PF (2002) Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab Rev 34:17–35PubMedCrossRefGoogle Scholar
  208. Honkakoski P, Negishi M (1997) Characterization of a phenobarbital-responsive enhancer module in mouse P450 Cyp2b10 gene. J Biol Chem 272:14943–14949PubMedCrossRefGoogle Scholar
  209. Honkakoski P, Moore R, Washburn KA et al (1998a) Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene. Mol Pharmacol 53:597–601PubMedGoogle Scholar
  210. Honkakoski P, Zelko I, Sueyoshi T et al (1998b) The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 18:5652–5658PubMedGoogle Scholar
  211. Hooper WD, Pool WF, Woolf TF et al (1994) Stereoselective hydroxylation of tacrine in rats and humans. Drug Metab Dispos 22:719–724PubMedGoogle Scholar
  212. Houston JB, Galetin A (2005) Modelling atypical CYP3A4 kinetics: principles and pragmatism. Arch Biochem Biophys 433:351–360PubMedCrossRefGoogle Scholar
  213. Howard LA, Miksys S, Hoffmann E et al (2003) Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol 138:1376–1386PubMedCrossRefGoogle Scholar
  214. Hruska MW, Amico JA, Langaee TY et al (2005) The effect of trimethoprim on CYP2C8 mediated rosiglitazone metabolism in human liver microsomes and healthy subjects. Br J Clin Pharmacol 59:70–79PubMedCrossRefGoogle Scholar
  215. Hrycay EG, Bandiera SM (2008) Cytochrome P450 Enzymes. In: Gad SC (ed) Preclinical development handbook. ADME and biopharmaceutical properties. Wiley, New YorkGoogle Scholar
  216. Hsiang B, Zhu Y, Wang Z et al (1999) A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 274:37161–37168PubMedCrossRefGoogle Scholar
  217. Hsu A, Granneman GR, Bertz RJ (1998) Ritonavir: clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 35:275–291PubMedCrossRefGoogle Scholar
  218. Hu Y, Mishin V, Johansson I et al (1994) Chlormethiazole as an efficient inhibitor of cytochrome P450 2E1 expression in rat liver. J Pharmacol Exp Ther 269:1286–1291PubMedGoogle Scholar
  219. Hu SW, Chen CC, Kuo CY et al (2006) Increased cytochrome P4501B1 gene expression in peripheral leukocytes of municipal waste incinerator workers. Toxicol Lett 160:112–120PubMedCrossRefGoogle Scholar
  220. Huang Z, Roy P, Waxman DJ (2000) Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 59:961–972PubMedCrossRefGoogle Scholar
  221. Huang W, Zhang J, Chua SS et al (2003) Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proc Natl Acad Sci USA 100:4156–4161PubMedCrossRefGoogle Scholar
  222. Huang SM, Temple R, Throckmorton DC et al (2007) Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther 81:298–304PubMedCrossRefGoogle Scholar
  223. Hukkanen J, Pelkonen O, Hakkola J et al (2002) Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol 32:391–411PubMedCrossRefGoogle Scholar
  224. Hukkanen J, Väisänen T, Lassila A et al (2003) Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther 304:745–752PubMedCrossRefGoogle Scholar
  225. Hukkanen J, Jacob P 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115PubMedCrossRefGoogle Scholar
  226. Huuskonen P, Storvik M, Reinisalo M et al (2008) Microarray analysis of the global alterations in the gene expression in the placentas from cigarette-smoking mothers. Clin Pharmacol Ther 83:542–550PubMedCrossRefGoogle Scholar
  227. Hyland R, Roe EG, Jones BC, Smith DA (2001) Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol 51:239–248PubMedCrossRefGoogle Scholar
  228. Iannone MA, Consler TG, Pearce KH et al (2001) Multiplexed molecular interactions of nuclear receptors using fluorescent microspheres. Cytometry 44:326–337PubMedCrossRefGoogle Scholar
  229. Ingelman-Sundberg M (2005) The human genome project and novel aspects of cytochrome P450 research. Toxicol Appl Pharmacol 207(suppl 2):52–56PubMedCrossRefGoogle Scholar
  230. Ingelman-Sundberg M, Sim SC, Gomez A et al (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526PubMedCrossRefGoogle Scholar
  231. Ioannides C, Lewis DF (2004) Cytochromes P450 in the bioactivation of chemicals. Curr Top Med Chem 4:1767–1788PubMedCrossRefGoogle Scholar
  232. Isoherranen N, Kunze KL, Allen KE et al (2004) Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos 32:1121–1131PubMedCrossRefGoogle Scholar
  233. Ito K, Iwatsubo T, Kanamitsu S et al (1998) Prediction of pharmacokinetic alterations caused by drug–drug interactions: metabolic interaction in the liver. Pharmacol Rev 50:387–412PubMedGoogle Scholar
  234. Ito K, Ogihara K, Kanamitsu S et al (2003) Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab Dispos 31:945–954PubMedCrossRefGoogle Scholar
  235. Ito K, Brown HS, Houston JB (2004) Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol 57:473–486PubMedCrossRefGoogle Scholar
  236. Iwahori T, Matsuura T, Maehashi H et al (2003) CYP3A4 inducible model for in vitro analysis of human drug metabolism using a bioartificial liver. Hepatology 37:665–673PubMedCrossRefGoogle Scholar
  237. Jaakkola T, Backman JT, Neuvonen M et al (2006a) Montelukast and zafirlukast do not affect the pharmacokinetics of the CYP2C8 substrate pioglitazone. Eur J Clin Pharmacol 62(7):503–509PubMedCrossRefGoogle Scholar
  238. Jaakkola T, Backman JT, Neuvonen M et al (2006b) Effect of rifampicin on the pharmacokinetics of pioglitazone. Br J Clin Pharmacol 61:70–78PubMedCrossRefGoogle Scholar
  239. Jacobs MN (2004) In silico tools to aid risk assessment of endocrine disrupting chemicals. Toxicology 205:43–53PubMedCrossRefGoogle Scholar
  240. Jacobsen W, Kirchner G, Hallensleben K et al (1999) Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Dispos 27:173–179PubMedGoogle Scholar
  241. Jacobsen W, Kuhn B, Soldner A et al (2000) Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 28:1369–1378PubMedGoogle Scholar
  242. Jao JY, Jusko WJ, Cohen JL (1972) Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Res 32:2761–2764PubMedGoogle Scholar
  243. Jiang X, Williams KM, Liauw WS et al (2004) Effect of St John’s wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br J Clin Pharmacol 57:592–599PubMedCrossRefGoogle Scholar
  244. Jiang X, Blair EY, McLachlan AJ (2006) Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J Clin Pharmacol 46:1370–1378PubMedCrossRefGoogle Scholar
  245. Jones SA, Moore LB, Shenk JL et al (2000) The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 14:27–39PubMedCrossRefGoogle Scholar
  246. Josse R, Aninat C, Glaise D et al (2008) Long-term functional stability of human HepaRG hepatocytes and use for chronic toxicity and genotoxicity studies. Drug Metab Dispos. doi: 10.1124/dmd.107.019901
  247. Justesen US, Klitgaard NA, Brosen K et al (2003) Pharmacokinetic interaction between amprenavir and delavirdine after multiple-dose administration in healthy volunteers. Br J Clin Pharmacol 55:100–106PubMedCrossRefGoogle Scholar
  248. Jyrkkärinne J, Mäkinen J, Gynther J et al (2003) Molecular determinants of steroid inhibition for the mouse constitutive androstane receptor. J Med Chem 46:4687–4695PubMedCrossRefGoogle Scholar
  249. Jyrkkärinne J, Windshügel B, Mäkinen J et al (2005) Amino acids important for ligand specificity of the human constitutive androstane receptor. J Biol Chem 280:5960–5971PubMedCrossRefGoogle Scholar
  250. Kahn GC, Boobis AR, Murray S et al (1982) Assay and characterisation of debrisoquine 4-hydroxylase activity of microsomal fractions of human liver. Br J Clin Pharmacol 13:637–645PubMedGoogle Scholar
  251. Kajosaari LI, Laitila J, Neuvonen PJ et al (2005) Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol 97:249–256PubMedCrossRefGoogle Scholar
  252. Kamdem LK, Streit F, Zanger UM et al (2005) Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem 51:1374–1381PubMedCrossRefGoogle Scholar
  253. Kanebratt KP, Andersson TB (2008) HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metab Dispos 36:137–145PubMedCrossRefGoogle Scholar
  254. Kapitulnik J, Strobel HW (1999) Extrahepatic drug metabolizing enzymes. J Biochem Mol Toxicol 13:227–230PubMedCrossRefGoogle Scholar
  255. Karjalainen MJ, Neuvonen PJ, Backman JT (2006) Rofecoxib is a potent, metabolism-dependent inhibitor of CYP1A2: implications for in vitro prediction of drug interactions. Drug Metab Dispos 34:2091–2096PubMedCrossRefGoogle Scholar
  256. Kashuba AD, Tierney C, Downey GF et al (2005) Combining fosamprenavir with lopinavir/ritonavir substantially reduces amprenavir and lopinavir exposure: ACTG protocol A5143 results. Aids 19:145–152PubMedCrossRefGoogle Scholar
  257. Katiyar SK, Matsui MS, Mukhtar H (2000) Ultraviolet-B exposure of human skin induces cytochromes P450 1A1 and 1B1. J Invest Dermatol 114:328–333PubMedCrossRefGoogle Scholar
  258. Katoh M, Tateno C, Yoshizato K et al (2008) Chimeric mice with humanized liver. Toxicology 246:9–17PubMedCrossRefGoogle Scholar
  259. Kawajiri K, Fujii-Kuriyama Y (2007) Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Arch Biochem Biophys 464:207–212PubMedCrossRefGoogle Scholar
  260. Kawana K, Ikuta T, Kobayashi Y et al (2003) Molecular mechanism of nuclear translocation of an orphan nuclear receptor, SXR. Mol Pharmacol 63:524–531PubMedCrossRefGoogle Scholar
  261. Kay L, Kampmann JP, Svendsen TL et al (1985) Influence of rifampicin and isoniazid on the kinetics of phenytoin. Br J Clin Pharmacol 20:323–326PubMedGoogle Scholar
  262. Kearney AS, Crawford LF, Mehta SC et al (1993) The interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm Res 10:1461–1465PubMedCrossRefGoogle Scholar
  263. Kent UM, Juschyshyn MI, Hollenberg PF (2001) Mechanism-based inactivators as probes of cytochrome P450 structure and function. Curr Drug Metab 2:215–243PubMedCrossRefGoogle Scholar
  264. Kent UM, Mills DE, Rajnarayanan RV et al (2002) Effect of 17-alpha-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. J Pharmacol Exp Ther 300:549–558PubMedCrossRefGoogle Scholar
  265. Kenworthy KE, Bloomer JC, Clarke SE et al (1999) CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 48:716–727PubMedCrossRefGoogle Scholar
  266. Kessova I, Cederbaum AI (2003) CYP2E1: biochemistry, toxicology, regulation and function in ethanol-induced liver injury. Curr Mol Med 3:509–518PubMedCrossRefGoogle Scholar
  267. Ketter TA, Jenkins JB, Schroeder DH et al (1995) Carbamazepine but not valproate induces bupropion metabolism. J Clin Psychopharmacol 15:327–333PubMedCrossRefGoogle Scholar
  268. Kharasch ED, Hankins DC, Baxter PJ et al (1998) Single-dose disulfiram does not inhibit CYP2A6 activity. Clin Pharmacol Ther 64:39–45PubMedCrossRefGoogle Scholar
  269. Kharasch ED, Mitchell D, Coles R et al (2008) Rapid clinical induction of hepatic cytochrome P4502B6 (CYP2B6) activity by ritonavir. Antimicrob Agents Chemother. doi: 10.1128/AAC.01600-07
  270. Kim RB, Wandel C, Leake B et al (1999) Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 16:408–414PubMedCrossRefGoogle Scholar
  271. Kim J, Min G, Kemper B (2001) Chromatin assembly enhances binding to the CYP2B1 phenobarbital-responsive unit (PBRU) of nuclear factor-1, which binds simultaneously with constitutive androstane receptor (CAR)/retinoid X receptor (RXR) and enhances CAR/RXR-mediated activation of the PBRU. J Biol Chem 276:7559–7567PubMedCrossRefGoogle Scholar
  272. Kim KA, Park JY, Lee JS et al (2003a) Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res 26:631–637PubMedGoogle Scholar
  273. Kim KA, Kim MJ, Park JY et al (2003b) Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Drug Metab Dispos 31:1227–1234PubMedCrossRefGoogle Scholar
  274. Kim KA, Park PW, Kim KR et al (2007) Effect of multiple doses of montelukast on the pharmacokinetics of rosiglitazone, a CYP2C8 substrate, in humans. Br J Clin Pharmacol 63:339–345PubMedCrossRefGoogle Scholar
  275. Kinonen T, Pasanen M, Gynther J et al (1995) Competitive inhibition of coumarin 7-hydroxylation by pilocarpine and its interaction with mouse CYP 2A5 and human CYP 2A6. Br J Pharmacol 116:2625–2630PubMedGoogle Scholar
  276. Kirchheiner J, Brockmöller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77:1–16PubMedCrossRefGoogle Scholar
  277. Kirchheiner J, Fuhr U, Brockmöller J (2005) Pharmacogenetics-based therapeutic recommendations—ready for clinical practice? Nat Rev Drug Discov 4:639–647PubMedCrossRefGoogle Scholar
  278. Kitada M, Kamataki T (1994) Cytochrome P450 in human fetal liver: significance and fetal-specific expression. Drug Metab Rev 26:305–323PubMedCrossRefGoogle Scholar
  279. Kivistö KT, Bookjans G, Fromm MF et al (1996) Expression of CYP3A4, CYP3A5 and CYP3A7 in human duodenal tissue. Br J Clin Pharmacol 42:387–389PubMedCrossRefGoogle Scholar
  280. Kivistö KT, Niemi M, Fromm MF (2004) Functional interaction of intestinal CYP3A4 and P-glycoprotein. Fundam Clin Pharmacol 18:621–626PubMedCrossRefGoogle Scholar
  281. Klees TM, Sheffels P, Dale O et al (2005) Metabolism of alfentanil by cytochrome p4503a (cyp3a) enzymes. Drug Metab Dispos 33:303–311PubMedCrossRefGoogle Scholar
  282. Kliewer SA, Moore JT, Wade L et al (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92:73–82PubMedCrossRefGoogle Scholar
  283. Ko JW, Sukhova N, Thacker D et al (1997) Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos 25:853–862PubMedGoogle Scholar
  284. Ko JW, Desta Z, Soukhova NV et al (2000) In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6. Br J Clin Pharmacol 49:343–351PubMedCrossRefGoogle Scholar
  285. Kobayashi K, Yamamoto T, Chiba K et al (1995) The effects of selective serotonin reuptake inhibitors and their metabolites on S-mephenytoin 4′-hydroxylase activity in human liver microsomes. Br J Clin Pharmacol 40:481–485PubMedGoogle Scholar
  286. Kobayashi K, Nakajima M, Chiba K et al (1998) Inhibitory effects of antiarrhythmic drugs on phenacetin O-deethylation catalysed by human CYP1A2. Br J Clin Pharmacol 45:361–368PubMedCrossRefGoogle Scholar
  287. Kobayashi K, Abe S, Nakajima M et al (1999) Role of human CYP2B6 in S-mephobarbital N-demethylation. Drug Metab Dispos 27:1429–1433PubMedGoogle Scholar
  288. Kobayashi K, Sueyoshi T, Inoue K et al (2003) Cytoplasmic accumulation of the nuclear receptor CAR by a tetratricopeptide repeat protein in HepG2 cells. Mol Pharmacol 64:1069–1075PubMedCrossRefGoogle Scholar
  289. Kobayashi K, Yamanaka Y, Iwazaki N et al (2005) Identification of HMG-CoA reductase inhibitors as activators for human, mouse and rat constitutive androstane receptor. Drug Metab Dispos 33:924–929PubMedCrossRefGoogle Scholar
  290. Kodama S, Koike C, Negishi M et al (2004) Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol 24:7931–7940PubMedCrossRefGoogle Scholar
  291. Kodama S, Moore R, Yamamoto Y et al (2007) Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochem J 407:373–381PubMedCrossRefGoogle Scholar
  292. Koenigs LL, Peter RM, Thompson SJ et al (1997) Mechanism-based inactivation of human liver cytochrome P450 2A6 by 8-methoxypsoralen. Drug Metab Dispos 25:1407–1415PubMedGoogle Scholar
  293. Koike C, Moore R, Negishi M (2007) Extracellular signal-regulated kinase is an endogenous signal retaining the nuclear constitutive active/androstane receptor (CAR) in the cytoplasm of mouse primary hepatocytes. Mol Pharmacol 71:1217–1221PubMedCrossRefGoogle Scholar
  294. Konishi H, Morita K, Minouchi T et al (1999) Preferential inhibition of CYP1A enzymes in hepatic microsomes by mexiletine. Eur J Drug Metab Pharmacokinet 24:149–153PubMedGoogle Scholar
  295. Koop DR, Coon MJ (1986) (1986) Ethanol oxidation and toxicity: role of alcohol P-450 oxygenase. Alcohol Clin Exp Res 10(suppl 6):44S–49SPubMedCrossRefGoogle Scholar
  296. Korjamo T, Honkakoski P, Toppinen MR et al (2005) Absorption properties and P-glycoprotein activity of modified Caco-2 cell lines. Eur J Pharm Sci 26:266–279PubMedCrossRefGoogle Scholar
  297. Kostrubsky VE, Ramachandran V, Venkataramanan R et al (1999) The use of human hepatocyte cultures to study the induction of cytochrome P-450. Drug Metab Dispos 27:887–894PubMedGoogle Scholar
  298. Koudriakova T, Iatsimirskaia E, Utkin I et al (1998) Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos 26:552–561PubMedGoogle Scholar
  299. Koyano S, Kurose K, Saito Y et al (2004) Functional characterization of four naturally occurring variants of human pregnane X receptor (PXR): one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region. Drug Metab Dispos 32:149–154PubMedCrossRefGoogle Scholar
  300. Kress S, Reichert J, Schwarz M (1998) Functional analysis of the human cytochrome P4501A1 (CYP1A1) gene enhancer. Eur J Biochem 258:803–812PubMedCrossRefGoogle Scholar
  301. Kronbach T, Fischer V, Meyer UA (1988) Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 43:630–635PubMedGoogle Scholar
  302. Kumar V, Rock DA, Warren CJ et al (2006) Enzyme source effects on CYP2C9 kinetics and inhibition. Drug Metab Dispos 34:1903–1908PubMedCrossRefGoogle Scholar
  303. Kunze KL, Trager WF (1993) Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline. Chem Res Toxicol 6:649–656PubMedCrossRefGoogle Scholar
  304. Kunze KL, Wienkers LC, Thummel KE et al (1996) Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 24:414–421PubMedGoogle Scholar
  305. Kuypers DR, Claes K, Evenepoel P et al (2004) Time-related clinical determinants of long-term tacrolimus pharmacokinetics in combination therapy with mycophenolic acid and corticosteroids: a prospective study in one hundred de novo renal transplant recipients. Clin Pharmacokinet 43:741–762PubMedCrossRefGoogle Scholar
  306. Kyerematen GA, Morgan M, Warner G et al (1990) Metabolism of nicotine by hepatocytes. Biochem Pharmacol 40:1747–1756PubMedCrossRefGoogle Scholar
  307. Laine K, Palovaara S, Tapanainen P et al (1999) Plasma tacrine concentrations are significantly increased by concomitant hormone replacement therapy. Clin Pharmacol Ther 66:602–608PubMedGoogle Scholar
  308. Lampe JW, Stepaniants SB, Mao M et al (2004) Signatures of environmental exposures using peripheral leukocyte gene expression: tobacco smoke. Cancer Epidemiol Biomarkers Prev 13:445–453PubMedGoogle Scholar
  309. Landay RA, Gonzalez MA, Taylor JC (1978) Effect of phenobarbital on theophylline disposition. J Allergy Clin Immunol 62:27–29PubMedCrossRefGoogle Scholar
  310. Landi MT, Sinha R, Lang NP et al (1999) Human cytochrome P4501A2. IARC Sci Publ 173–195Google Scholar
  311. Lasser KE, Allen PD, Woolhandler SJ et al (2002) Timing of new black box warnings and withdrawals for prescription medications. JAMA 287:2215–2220PubMedCrossRefGoogle Scholar
  312. Lau WC, Gurbel PA (2006) Antiplatelet drug resistance and drug–drug interactions: Role of cytochrome P450 3A4. Pharm Res 23:2691–2708PubMedCrossRefGoogle Scholar
  313. Lavrijsen KL, Van Houdt JM, Van Dyck DM et al (1988) Is the metabolism of alfentanil subject to debrisoquine polymorphism? A study using human liver microsomes. Anesthesiology 69:535–540PubMedCrossRefGoogle Scholar
  314. Lecamwasam DS, Franklin C, Turner P (1975) Effect of phenobarbitone on hepatic drug-metabolizing enzymes and urinary d-glucaric acid excretion in man. Br J Clin Pharmacol 2:257–262PubMedGoogle Scholar
  315. LeCluyse EL (2001) Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci 13:343–368PubMedCrossRefGoogle Scholar
  316. Leemann T, Transon C, Dayer P (1993) Cytochrome P450 TB (CYP2C): a major monooxygenase catalyzing diclofenac 4′-hydroxylation in human liver. Life Sci 52:29–34PubMedCrossRefGoogle Scholar
  317. Lehmann JM, McKee DD, Watson MA et al (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102:1016–1023PubMedCrossRefGoogle Scholar
  318. Lemaire G, Benod C, Nahoum V et al (2007) Discovery of a highly active ligand of human pregnane X receptor: a case study from pharmacophore modeling and virtual screening to “in vivo” biological activity. Mol Pharmacol 72(3):572–851PubMedCrossRefGoogle Scholar
  319. Lerche-Langrand C, Toutain HJ (2000) Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology 153:221–253PubMedCrossRefGoogle Scholar
  320. Levine M, Sheppard I (1984) Biphasic interaction of phenytoin with warfarin. Clin Pharm 3:200–203PubMedGoogle Scholar
  321. Lewis DF, Jacobs MN, Dickins M et al (2002) Quantitative structure–activity relationships for inducers of cytochromes P450 and nuclear receptor ligands involved in P450 regulation within the CYP1, CYP2, CYP3 and CYP4 families. Toxicology 176:51–57PubMedCrossRefGoogle Scholar
  322. Lewis DF (2004) 57 Varieties: the human cytochromes P450. Pharmacogenomics 5:305–318PubMedCrossRefGoogle Scholar
  323. Li AP, Gorycki PD, Hengstler JG et al (1999) Present status of the application of cryopreserved hepatocytes in the evaluation of xenobiotics: consensus of an international expert panel. Chem Biol Interact 121:117–123PubMedCrossRefGoogle Scholar
  324. Li T, Chiang JY (2005) Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol 288:G74–G84PubMedCrossRefGoogle Scholar
  325. Li T, Chiang JY (2006) Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab Dispos 34:756–764PubMedCrossRefGoogle Scholar
  326. Li Y, Li NY, Sellers EM (1997) Comparison of CYP2A6 catalytic activity on coumarin 7-hydroxylation in human and monkey liver microsomes. Eur J Drug Metab Pharmacokinet 22:295–304PubMedGoogle Scholar
  327. Li XQ, Björkman A, Andersson TB et al (2002) Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 300:399–407PubMedCrossRefGoogle Scholar
  328. Li XQ, Björkman A, Andersson TB et al (2003) Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol 59:429–442PubMedCrossRefGoogle Scholar
  329. Lieber CS (1999) Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998)—a review. Alcohol Clin Exp Res 23:991–1007PubMedGoogle Scholar
  330. Lieber CS (2004) The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 36:511–529PubMedCrossRefGoogle Scholar
  331. Lillibridge JH, Liang BH, Kerr BM et al (1998) Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos 26:609–616PubMedGoogle Scholar
  332. Lim ML, Min SS, Eron JJ et al (2004) Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction. J Acquir Immune Defic Syndr 36:1034–1040PubMedCrossRefGoogle Scholar
  333. Lim PL, Tan W, Latchoumycandane C et al (2007) Molecular and functional characterization of drug-metabolizing enzymes and transporter expression in the novel spontaneously immortalized human hepatocyte line HC-04. Toxicol In Vitro 21:1390–1401PubMedCrossRefGoogle Scholar
  334. Lin JH, Lu AY (1998) Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 35:361–390PubMedCrossRefGoogle Scholar
  335. Liu C, Russell RM, Wang XD (2003) Exposing ferrets to cigarette smoke and a pharmacological dose of beta-carotene supplementation enhance in vitro retinoic acid catabolism in lungs via induction of cytochrome P450 enzymes. J Nutr 133:173–179PubMedGoogle Scholar
  336. Liu YT, Hao HP, Liu CX et al (2007) Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 39:699–721PubMedCrossRefGoogle Scholar
  337. Liu FJ, Song X, Yang D et al (2008) The far and distal enhancers in the CYP3A4 gene co-ordinate the proximal promoter in responding similarly to the pregnane X receptor but differentially to hepatocyte nuclear factor-4α. Biochem J 409:243–250PubMedCrossRefGoogle Scholar
  338. Lo Piparo E, Koehler K et al (2006) Virtual screening for aryl hydrocarbon receptor binding prediction. J Med Chem 49:5702–5709PubMedCrossRefGoogle Scholar
  339. Loboz KK, Gross AS, Williams KM et al (2006) Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther 80:75–84PubMedCrossRefGoogle Scholar
  340. London SJ, Idle JR, Daly AK et al (1999) Genetic variation of CYP2A6, smoking, and risk of cancer. Lancet 353:898–899PubMedCrossRefGoogle Scholar
  341. Long M, Laier P, Vinggaard AM et al (2003) Effects of currently used pesticides in the AhR-CALUX assay: comparison between the human TV101L and the rat H4IIE cell line. Toxicology 194:77–93PubMedCrossRefGoogle Scholar
  342. Lopez-Cortes LF, Ruiz-Valderas R, Viciana P et al (2002) Pharmacokinetic interactions between efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet 41:681–690PubMedCrossRefGoogle Scholar
  343. Lucas D, Menez C, Girre C et al (1995) Decrease in cytochrome P4502E1 as assessed by the rate of chlorzoxazone hydroxylation in alcoholics during the withdrawal phase. Alcohol Clin Exp Res 19:362–366PubMedCrossRefGoogle Scholar
  344. Luo G, Cunningham M, Kim S et al (2002) CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 30:795–804PubMedCrossRefGoogle Scholar
  345. Luo G, Guenthner T, Gan LS et al (2004) CYP3A4 induction by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development. Curr Drug Metab 5:483–505PubMedCrossRefGoogle Scholar
  346. Ma Q (2001) Induction of CYP1A1. The AhR/DRE paradigm: transcription, receptor regulation, and expanding biological roles. Curr Drug Metab 2:149–164PubMedCrossRefGoogle Scholar
  347. Ma Q, Lu AY (2007) CYP1A induction and human risk assessment: an evolving tale of in vitro and in vivo studies. Drug Metab Dispos 35:1009–1016PubMedCrossRefGoogle Scholar
  348. Ma X, Idle JR, Krausz KW et al (2005) Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos 33:489–494PubMedCrossRefGoogle Scholar
  349. Ma X, Shah Y, Cheung C et al (2007) The PREgnane X receptor gene-humanized mouse: a model for investigating drug–drug interactions mediated by cytochromes P450 3A. Drug Metab Dispos 35:194–200PubMedCrossRefGoogle Scholar
  350. Madan A, Usuki E, Burton LA et al (2002) In vitro approaches for studying the inhibition of drug-metabolizing enzymes responsible for the metabolism of drugs. In: Rodrigues AD (ed) Drug–drug interactions: from basic pharmacokinetic concepts to marketing issues. Marcel-Dekker, LondonGoogle Scholar
  351. Madan A, Graham RA, Carroll KM et al (2003) Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 31:421–431PubMedCrossRefGoogle Scholar
  352. Mäenpää J, Juvonen R, Raunio H et al (1994) Metabolic interactions of methoxsalen and coumarin in humans and mice. Biochem Pharmacol 48(7):1363–1369PubMedCrossRefGoogle Scholar
  353. Mäenpää J, Hall SD, Ring BJ et al (1998) Human cytochrome P450 3A (CYP3A) mediated midazolam metabolism: the effect of assay conditions and regioselective stimulation by alpha-naphthoflavone, terfenadine and testosterone. Pharmacogenetics 8:137–155PubMedGoogle Scholar
  354. Maglich JM, Parks DJ, Moore LB et al (2003) Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J Biol Chem 278(19):17277–17283PubMedCrossRefGoogle Scholar
  355. Mäkinen J, Frank C, Jyrkkärinne J et al (2002) Modulation of mouse and human phenobarbital-responsive enhancer module by nuclear receptors. Mol Pharmacol 62(2):366–378PubMedCrossRefGoogle Scholar
  356. Mäkinen J, Reinisalo M, Niemi K et al (2003) Dual action of oestrogens on the mouse constitutive androstane receptor. Biochem J 376:465–472PubMedCrossRefGoogle Scholar
  357. Manno M, Rezzadore M, Grossi M et al (1996) Potentiation of occupational carbon tetrachloride toxicity by ethanol abuse. Hum Exp Toxicol 15:294–300PubMedGoogle Scholar
  358. Martin H, Sarsat JP, de Waziers I et al (2003) Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res 20:557–568PubMedCrossRefGoogle Scholar
  359. Martin P, Riley R, Back DJ et al (2008) Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br J Pharmacol 153(4):805–819PubMedCrossRefGoogle Scholar
  360. Maruyama M, Matsunaga T, Harada E et al (2007) Comparison of basal gene expression and induction of CYP3As in HepG2 and human fetal liver cells. Biol Pharm Bull 30(11):2091–2097PubMedCrossRefGoogle Scholar
  361. Masuyama H, Suwaki N, Tateishi Y et al (2005) The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion. Mol Endocrinol 19:1170–1180PubMedCrossRefGoogle Scholar
  362. Matsunaga T, Maruyama M, Harada E et al (2004) Expression and induction of CYP3As in human fetal hepatocytes. Biochem Biophys Res Commun 318(2):428–434PubMedCrossRefGoogle Scholar
  363. Mazze RI, Woodruff RE, Heerdt ME (1982) Isoniazid-induced enflurane defluorination in humans. Anesthesiology 57:5–8PubMedCrossRefGoogle Scholar
  364. McCarver DG, Hines RN (2002) The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 300:361–366PubMedCrossRefGoogle Scholar
  365. McCune JS, Hawke RL, LeCluyse EL et al (2000) In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther 68:356–366PubMedCrossRefGoogle Scholar
  366. McDonnell WM, Scheiman JM, Traber PG (1992) Induction of cytochrome P450IA genes (CYP1A) by omeprazole in the human alimentary tract. Gastroenterology 103:1509–1516PubMedGoogle Scholar
  367. McLellan RA, Drobitch RK, Monshouwer M et al (1996) Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human. Drug Metab Dispos 24:1134–1138PubMedGoogle Scholar
  368. Mekenyan OG, Veith GD, Call DJ et al (1996) A QSAR evaluation of Ah receptor binding of halogenated aromatic xenobiotics. Environ Health Perspect 104:1302–1310PubMedCrossRefGoogle Scholar
  369. Messina ES, Tyndale RF, Sellers EM (1997) A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther 282:1608–1614PubMedGoogle Scholar
  370. Mihara K, Svensson US, Tybring G et al (1999) Stereospecific analysis of omeprazole supports artemisinin as a potent inducer of CYP2C19. Fundam Clin Pharmacol 13:671–675PubMedGoogle Scholar
  371. Miki Y, Suzuki T, Tazawa C et al (2005) Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol 231:75–85PubMedCrossRefGoogle Scholar
  372. Mildvan D, Yarrish R, Marshak A et al (2002) Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr 29:471–477PubMedGoogle Scholar
  373. Miller M, Cosgriff J, Kwong T et al (1984) Influence of phenytoin on theophylline clearance. Clin Pharmacol Ther 35:666–669PubMedGoogle Scholar
  374. Mimura J, Ema M, Sogawa K et al (1999) Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev 13:20–25PubMedCrossRefGoogle Scholar
  375. Miners JO, Coulter S, Tukey RH et al (1996) Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol 51:1003–1008PubMedCrossRefGoogle Scholar
  376. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538PubMedCrossRefGoogle Scholar
  377. Mollerup S, Ryberg D, Hewer A et al (1999) Sex differences in lung CYP1A1 expression and DNA adduct levels among lung cancer patients. Cancer Res 59:3317–3320PubMedGoogle Scholar
  378. Moore LB, Parks DJ, Jones SA et al (2000) Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 275:15122–15127PubMedCrossRefGoogle Scholar
  379. Moore LB, Maglich JM, McKee DD et al (2002) Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 16:977–986PubMedCrossRefGoogle Scholar
  380. Moriguchi T, Motohashi H, Hosoya T et al (2003) Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse. Proc Natl Acad Sci USA 100:5652–5657PubMedCrossRefGoogle Scholar
  381. Mortimer O, Persson K, Ladona MG et al (1990) Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin Pharmacol Ther 47:27–35PubMedGoogle Scholar
  382. Mouly S, Lown KS, Kornhauser D et al (2002) Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans. Clin Pharmacol Ther 72:1–9PubMedCrossRefGoogle Scholar
  383. Murk AJ, Legler J, Denison MS et al (1996) Chemical-activated luciferase gene expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol 33:149–160PubMedCrossRefGoogle Scholar
  384. Nabuurs SB, Wagener M, de Vlieg J (2007) A flexible approach to induced fit docking. J Med Chem 50:6507–6518PubMedCrossRefGoogle Scholar
  385. Nagy SR, Sanborn JR, Hammock BD et al (2002) Development of a green fluorescent protein-based cell bioassay for the rapid and inexpensive detection and characterization of Ah receptor agonists. Toxicol Sci 65:200–210PubMedCrossRefGoogle Scholar
  386. Nakajima M, Yokoi T, Mizutani M et al (1994) Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol Biomarkers Prev 3:413–421PubMedGoogle Scholar
  387. Nakajima M, Yamamoto T, Nunoya K et al (1996a) Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab Dispos 24:1212–1217PubMedGoogle Scholar
  388. Nakajima M, Yamamoto T, Nunoya K et al (1996b) Characterization of CYP2A6 involved in 3′-hydroxylation of cotinine in human liver microsomes. J Pharmacol Exp Ther 277:1010–1015PubMedGoogle Scholar
  389. Nakajima M, Inoue T, Shimada N et al (1998) Cytochrome P450 2C9 catalyzes indomethacin O-demethylation in human liver microsomes. Drug Metab Dispos 26:261–266PubMedGoogle Scholar
  390. Nakamura K, Moore R, Negishi M et al (2007) Nucar pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J Biol Chem 282:9768–9776PubMedCrossRefGoogle Scholar
  391. Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960PubMedCrossRefGoogle Scholar
  392. Nebert DW, Zhang G, Vesell ES (2008) From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 40:187–224PubMedCrossRefGoogle Scholar
  393. Nelson DR, Zeldin DC, Hoffman SM et al (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18PubMedCrossRefGoogle Scholar
  394. Newton DJ, Wang RW, Lu AY (1995) Cytochrome P450 inhibitors. Evaluation of specificities in the in vitrometabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos 23:154–158PubMedGoogle Scholar
  395. Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116PubMedCrossRefGoogle Scholar
  396. Nielsen TL, Rasmussen BB, Flinois JP et al (1999) In vitro metabolism of quinidine: the (3S)-3-hydroxylation of quinidine is a specific marker reaction for cytochrome P-4503A4 activity in human liver microsomes. J Pharmacol Exp Ther 289:31–37PubMedGoogle Scholar
  397. Niemi M, Backman JT, Neuvonen M et al (2000) Rifampin decreases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 68:495–500PubMedCrossRefGoogle Scholar
  398. Niemi M, Backman JT, Neuvonen M et al (2001) Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther 69:400–406PubMedCrossRefGoogle Scholar
  399. Niemi M, Leathart JB, Neuvonen M et al (2003a) Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin Pharmacol Ther 74:380–387PubMedCrossRefGoogle Scholar
  400. Niemi M, Backman JT, Fromm MF et al (2003b) Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 42:819–850PubMedCrossRefGoogle Scholar
  401. Niemi M, Backman JT, Neuvonen PJ (2004) Effects of trimethoprim and rifampin on the pharmacokinetics of the cytochrome P450 2C8 substrate rosiglitazone. Clin Pharmacol Ther 76:239–249PubMedCrossRefGoogle Scholar
  402. Nishimura M, Naito S, Yokoi T (2004) Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab Pharmacokinet 19:135–149PubMedCrossRefGoogle Scholar
  403. Nishimura M, Yoshitsugu H, Yokoi T et al (2005) Evaluation of mRNA expression of human drug-metabolizing enzymes and transporters in chimeric mouse with humanized liver. Xenobiotica 35:877–890PubMedCrossRefGoogle Scholar
  404. Nishizato Y, Ieiri I, Suzuki H et al (2003) Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 73:554–565PubMedCrossRefGoogle Scholar
  405. Niwa T, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 28:1805–1808PubMedCrossRefGoogle Scholar
  406. Nunoya K, Yokoi Y, Kimura K et al (1996) (+)-cis-3, 5-Dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride (SM-12502) as a novel substrate for cytochrome P450 2A6 in human liver microsomes. J Pharmacol Exp Ther 277:768–774PubMedGoogle Scholar
  407. Obach RS, Walsky RL, Venkatakrishnan K et al (2006) The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J Pharmacol Exp Ther 316:336–348PubMedCrossRefGoogle Scholar
  408. Oda Y, Furuichi K, Tanaka K et al (1995) Metabolism of a new local anesthetic, ropivacaine, by human hepatic cytochrome P450. Anesthesiology 82:214–220PubMedCrossRefGoogle Scholar
  409. Oda Y, Hamaoka N, Hiroi T et al (2001) Involvement of human liver cytochrome P4502B6 in the metabolism of propofol. Br J Clin Pharmacol 51:281–285PubMedCrossRefGoogle Scholar
  410. Ogg MS, Williams JM, Tarbit M et al (1999) A reporter gene assay to assess the molecular mechanisms of xenobiotic-dependent induction of the human CYP3A4 gene in vitro. Xenobiotica 29:269–279PubMedCrossRefGoogle Scholar
  411. Ogilvie BW, Zhang D, Li W et al (2006) Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metab Dispos 34:191–197PubMedCrossRefGoogle Scholar
  412. Ogiso T, Iwaki M, Uno S (1995) Inhibition kinetics of theophylline metabolism by mexiletine and its metabolites. Biol Pharm Bull 18:75–81PubMedGoogle Scholar
  413. Ohyama K, Nakajima M, Nakamura S et al (2000) A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos 28:1303–1310PubMedGoogle Scholar
  414. Olesen OV, Linnet K (2001) Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol 41:823–832PubMedCrossRefGoogle Scholar
  415. Oneta CM, Lieber CS, Li J et al (2002) Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J Hepatol 36:47–52PubMedCrossRefGoogle Scholar
  416. Ono S, Hatanaka T, Hotta H et al (1995) Chlorzoxazone is metabolized by human CYP1A2 as well as by human CYP2E1. Pharmacogenetics 5:143–150PubMedCrossRefGoogle Scholar
  417. Orans J, Teotico DG, Redinbo MR (2005) The nuclear xenobiotic receptor pregnane X receptor: recent insights and new challenges. Mol Endocrinol 19:2891–2900PubMedCrossRefGoogle Scholar
  418. O’Reilly RA (1974) Interaction of sodium warfarin and rifampin. Studies in man. Ann Intern Med 81:337–340PubMedGoogle Scholar
  419. O’Reilly RA, Trager WF, Motley CH et al (1980) Interaction of secobarbital with warfarin pseudoracemates. Clin Pharmacol Ther 28:187–195PubMedGoogle Scholar
  420. Orlando R, Piccoli P, De Martin S et al (2004) Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther 75:80–88PubMedCrossRefGoogle Scholar
  421. Orme M, Breckenridge A (1976) Enantiomers of warfarin and phenobarbital. N Engl J Med 295:1482–1483PubMedGoogle Scholar
  422. Osabe M, Sugatani J, Takemura A et al (2008) Expression of CAR in SW480 and HepG2 cells during G1 is associated with cell proliferation. Biochem Biophys Res Commun 369:1027–1033PubMedCrossRefGoogle Scholar
  423. O’Shea D, Kim RB, Wilkinson GR (1997) Modulation of CYP2E1 activity by isoniazid in rapid and slow N-acetylators. Br J Clin Pharmacol 43:99–103PubMedCrossRefGoogle Scholar
  424. Otton SV, Inaba T, Kalow W (1984) Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sci 34:73–80PubMedCrossRefGoogle Scholar
  425. Otton SV, Brinn RU, Gram LF (1988) In vitro evidence against the oxidation of quinidine by the sparteine/debrisoquine monooxygenase of human liver. Drug Metab Dispos 16:15–17PubMedGoogle Scholar
  426. Ourlin JC, Lasserre F, Pineau T et al (2003) The small heterodimer partner interacts with the pregnane X receptor and represses its transcriptional activity. Mol Endocrinol 17:1693–1703PubMedCrossRefGoogle Scholar
  427. Paine MF, Hart HL, Ludington SS et al (2006) The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 34:880–886PubMedCrossRefGoogle Scholar
  428. Paladino JA, Blumer NA, Maddox RR (1983) Effect of secobarbital on theophylline clearance. Ther Drug Monit 5:135–139PubMedCrossRefGoogle Scholar
  429. Palovaara S, Pelkonen O, Uusitalo J et al (2003) Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther 74:326–333PubMedCrossRefGoogle Scholar
  430. Park BK, Kitteringham NR, Pirmohamed M et al (1996) Relevance of induction of human drug-metabolizing enzymes: pharmacological and toxicological implications. Br J Clin Pharmacol 41:477–491PubMedCrossRefGoogle Scholar
  431. Park JY, Kim KA, Kang MH et al (2004) Effect of rifampin on the pharmacokinetics of rosiglitazone in healthy subjects. Clin Pharmacol Ther 75:157–162PubMedCrossRefGoogle Scholar
  432. Parker AC, Pritchard P, Preston T et al (1998) Induction of CYP1A2 activity by carbamazepine in children using the caffeine breath test. Br J Clin Pharmacol 45:176–178PubMedCrossRefGoogle Scholar
  433. Parkinson A, Mudra DR, Johnson C et al (2004) The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol 199:193–209PubMedCrossRefGoogle Scholar
  434. Pascussi JM, Gerbal-Chaloin S, Duret C et al (2008) The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 48:1–32PubMedCrossRefGoogle Scholar
  435. Patki KC, Von Moltke LL, Greenblatt DJ (2003) In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos 31:938–944PubMedCrossRefGoogle Scholar
  436. Pearce R, Greenway D, Parkinson A (1992) Species differences and interindividual variation in liver microsomal cytochrome P450 2A enzymes: effects on coumarin, dicumarol, and testosterone oxidation. Arch Biochem Biophys 298:211–225PubMedCrossRefGoogle Scholar
  437. Pearce RE, Rodrigues AD, Goldstein JA et al (1996) Identification of the human P450 enzymes involved in lansoprazole metabolism. J Pharmacol Exp Ther 277:805–816PubMedGoogle Scholar
  438. Pelkonen O, Sotaniemi EA, Ahokas JT (1985) Coumarin 7-hydroxylase activity in human liver microsomes. Properties of the enzyme and interspecies comparisons. Br J Clin Pharmacol 19:59–66PubMedGoogle Scholar
  439. Pelkonen O, Mäenpää J, Taavitsainen P et al (1998) Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 28:1203–1253PubMedCrossRefGoogle Scholar
  440. Pelkonen O, Rautio A, Raunio H et al (2000) CYP2A6: a human coumarin 7-hydroxylase. Toxicology 144:139–147PubMedCrossRefGoogle Scholar
  441. Pelkonen O, Turpeinen M, Uusitalo J et al (2005) Prediction of drug metabolism and interactions on the basis of in vitro investigations. Basic Clin Pharmacol Toxicol 96:167–175PubMedCrossRefGoogle Scholar
  442. Pelkonen O, Kapitulnik J, Gundert-Remy U et al (2008) Local kinetics and dynamics of xenobiotics. Crit Rev Toxicol, in pressGoogle Scholar
  443. Perrot N, Nalpas B, Yang CS et al (1989) Modulation of cytochrome P450 isozymes in human liver, by ethanol and drug intake. Eur J Clin Invest 19:549–555PubMedCrossRefGoogle Scholar
  444. Persson KP, Ekehed S, Otter C et al (2006) Evaluation of human liver slices and reporter gene assays as systems for predicting the cytochrome P450 induction potential of drugs in vivo in humans. Pharm Res 23:56–69PubMedCrossRefGoogle Scholar
  445. Perucca E (2006) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61:246–255PubMedCrossRefGoogle Scholar
  446. Perucca E, Grimaldi R, Frigo GM et al (1988) Comparative effects of rifabutin and rifampicin on hepatic microsomal enzyme activity in normal subjects. Eur J Clin Pharmacol 34:595–599PubMedCrossRefGoogle Scholar
  447. Pfrunder A, Gutmann H, Beglinger C et al (2003) Gene expression of CYP3A4, ABC-transporters (MDR1 and MRP1-MRP5) and hPXR in three different human colon carcinoma cell lines. J Pharm Pharmacol 55:59–66PubMedCrossRefGoogle Scholar
  448. Pinto AG, Wang YH, Chalasani N et al (2005) Inhibition of human intestinal wall metabolism by macrolide antibiotics: effect of clarithromycin on cytochrome P450 3A4/5 activity and expression. Clin Pharmacol Ther 77:178–188PubMedCrossRefGoogle Scholar
  449. Plant N (2007) The human cytochrome P450 sub-family: transcriptional regulation, inter-individual variation and interaction networks. Biochim Biophys Acta 1770:478–488PubMedGoogle Scholar
  450. Pollock BG, Wylie M, Stack JA et al (1999) Inhibition of caffeine metabolism by estrogen replacement therapy in postmenopausal women. J Clin Pharmacol 39:936–940PubMedCrossRefGoogle Scholar
  451. Poso A, Honkakoski P (2006) Ligand recognition by drug-activated nuclear receptors PXR and CAR: structural, site-directed mutagenesis and molecular modeling studies. Mini Rev Med Chem 6:937–947PubMedCrossRefGoogle Scholar
  452. Projean D, Baune B, Farinotti R et al (2003) In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos 31:748–754PubMedCrossRefGoogle Scholar
  453. Prueksaritanont T, Gorham LM, Ma B et al (1997) In vitro metabolism of simvastatin in humans [SBT]identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 25:1191–1199PubMedGoogle Scholar
  454. Prueksaritanont T, Ma B, Yu N (2003) The human hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, and not CYP2D6. Br J Clin Pharmacol 56:120–124PubMedCrossRefGoogle Scholar
  455. Puurunen J, Pelkonen O (1979) Cimetidine inhibits microsomal drug metabolism in the rat. Eur J Pharmacol 55:335–336PubMedCrossRefGoogle Scholar
  456. Rae JM, Soukhova NV, Flockhart DA et al (2002) Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism. Drug Metab Dispos 30:525–530PubMedCrossRefGoogle Scholar
  457. Raffalli-Mathieu F, Glisovic T, Ben-David Y et al (2002) Heterogeneous nuclear ribonucleoprotein A1 and regulation of the xenobiotic-inducible gene Cyp2a5. Mol Pharmacol 61:795–799PubMedCrossRefGoogle Scholar
  458. Ramírez J, Innocenti F, Schuetz EG et al (2004) CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes. Drug Metab Dispos 32:930–936PubMedGoogle Scholar
  459. Rasheed A, Hines RN, McCarver-May DG (1997) Variation in induction of human placental CYP2E1: possible role in susceptibility to fetal alcohol syndrome? Toxicol Appl Pharmacol 144:396–400PubMedCrossRefGoogle Scholar
  460. Rasmussen BB, Maënpää J, Pelkonen O et al (1995) Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol 39:151–159PubMedGoogle Scholar
  461. Rasmussen BB, Brix TH, Kyvik KO et al (2002) The interindividual differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics 12:473–478PubMedCrossRefGoogle Scholar
  462. Raucy JL, Kraner JC, Lasker JM (1993) Bioactivation of halogenated hydrocarbons by cytochrome P4502E1. Crit Rev Toxicol 23:1–20PubMedCrossRefGoogle Scholar
  463. Raucy JL, Schultz ED, Wester MR et al (1997) Human lymphocyte cytochrome P450 2E1, a putative marker for alcohol-mediated changes in hepatic chlorzoxazone activity. Drug Metab Dispos 25:1429–1435PubMedGoogle Scholar
  464. Raucy JL, Schultz ED, Kearins MC et al (1999) CYP2E1 expression in human lymphocytes from various ethnic populations. Alcohol Clin Exp Res 23:1868–1874PubMedGoogle Scholar
  465. Raunio H, Rautio A, Gullstén H et al (2001) Polymorphisms of CYP2A6 and its practical consequences. Br J Clin Pharmacol 52:357–363PubMedCrossRefGoogle Scholar
  466. Reed GA, Peterson KS, Smith HJ et al (2005) A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomarkers Prev 14:1953–1960PubMedCrossRefGoogle Scholar
  467. Relling MV, Aoyama T, Gonzalez FJ et al (1990) Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 252:442–447PubMedGoogle Scholar
  468. Rencurel F, Foretz M, Kaufmann MR et al (2006) Stimulation of AMP-activated protein kinase is essential for the induction of drug metabolizing enzymes by phenobarbital in human and mouse liver. Mol Pharmacol 70:1925–1934PubMedCrossRefGoogle Scholar
  469. Rencurel F, Stenhouse A, Hawley SA et al (2005) AMP-activated protein kinase mediates phenobarbital induction of CYP2B gene expression in hepatocytes and a newly derived human hepatoma cell line. J Biol Chem 280:4367–4373PubMedCrossRefGoogle Scholar
  470. Rendic S, Sunjic V, Toso R et al (1979) Interaction of cimetidine with liver microsomes. Xenobiotica 9:555–564PubMedCrossRefGoogle Scholar
  471. Rendic S (2002) Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 34:83–448PubMedCrossRefGoogle Scholar
  472. Reschly EJ, Krasowski MD (2006) Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab 7:349–365PubMedCrossRefGoogle Scholar
  473. Richter E, Breimer DD, Zilly W (1980) Disposition of hexobarbital in intra- and extrahepatic cholestasis in man and the influence of drug metabolism-inducing agents. Eur J Clin Pharmacol 17:197–202PubMedCrossRefGoogle Scholar
  474. Richter T, Mürdter TE, Heinkele G et al (2004) Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther 308:189–197PubMedCrossRefGoogle Scholar
  475. Richter T, Schwab M, Eichelbaum M et al (2005) Inhibition of human CYP2B6 by N, N′, N″-triethylenethiophosphoramide is irreversible and mechanism-based. Biochem Pharmacol 69:517–524PubMedCrossRefGoogle Scholar
  476. Ring BJ, Gillespie JS, Eckstein JA et al (2002) Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 30:319–323PubMedCrossRefGoogle Scholar
  477. Rivera SP, Saarikoski ST, Hankinson O (2002) Identification of a novel dioxin-inducible cytochrome P450. Mol Pharmacol 61:255–259PubMedCrossRefGoogle Scholar
  478. Roberts EA, Johnson KC, Harper PA et al (1990) Characterization of the Ah receptor mediating aryl hydrocarbon hydroxylase induction in the human liver cell line Hep G2. Arch Biochem Biophys 276:442–450PubMedCrossRefGoogle Scholar
  479. Robertson P Jr, Hellriegel ET, Arora S et al (2002) Effect of modafinil on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin Pharmacol Ther 71:46–56PubMedCrossRefGoogle Scholar
  480. Rochat B, Morsman JM, Murray GI et al (2001) Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther 296:537–541PubMedGoogle Scholar
  481. Rodrigues AD, Kukulka MJ, Roberts EM et al (1996) [O-methyl 14C]naproxen O-demethylase activity in human liver microsomes: evidence for the involvement of cytochrome P4501A2 and P4502C9/10. Drug Metab Dispos 24:126–136PubMedGoogle Scholar
  482. Rodríguez-Antona C, Donato MT, Boobis A et al (2002) Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 32:505–520PubMedCrossRefGoogle Scholar
  483. Rodriguez-Antona C, Niemi M, Backman JT et al (2007) Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. Pharmacogenomics J. doi: 10.1038/sj.tpj.6500482
  484. Rostami-Hodjegan A, Tucker GT (2007) Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 6:140–148PubMedCrossRefGoogle Scholar
  485. Rouleau N, Turcotte S, Mondou MH et al (2003) Development of a versatile platform for nuclear receptor screening using AlphaScreen. J Biomol Screen 8:191–197PubMedCrossRefGoogle Scholar
  486. Roy P, Yu LJ, Crespi CL et al (1999a) Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 7:655–666Google Scholar
  487. Roy P, Tretyakov O, Wright J et al (1999b) Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer. Drug Metab Dispos 7:1309–1318Google Scholar
  488. Roymans D, Annaert P, Van Houdt J et al (2005) Expression and induction potential of cytochromes P450 in human cryopreserved hepatocytes. Drug Metab Dispos 33:1004–1016PubMedCrossRefGoogle Scholar
  489. Rumack BH (2004) Acetaminophen misconceptions. Hepatology 40:10–15PubMedCrossRefGoogle Scholar
  490. Saarikoski ST, Rivera SP, Hankinson O et al (2005) CYP2S1: a short review. Toxicol Appl Pharmacol 207:62–69PubMedCrossRefGoogle Scholar
  491. Sachse C, Brockmoller J, Bauer S et al (1999) Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449PubMedCrossRefGoogle Scholar
  492. Sahi J, Milad MA, Zheng X et al (2003) Avasimibe induces CYP3A4 and multiple drug resistance protein 1 gene expression through activation of the pregnane X receptor. J Pharmacol Exp Ther 306:1027–1034PubMedCrossRefGoogle Scholar
  493. Sanderink GJ, Bournique B, Stevens J et al (1997) Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro. J Pharmacol Exp Ther 282:1465–1472PubMedGoogle Scholar
  494. Sarkar MA, Jackson BJ (1994) Theophylline N-demethylations as probes for P4501A1 and P4501A2. Drug Metab Dispos 22:827–834PubMedGoogle Scholar
  495. Saussele T, Burk O, Blievernicht JK et al (2007) Selective induction of human hepatic cytochromes P450 2B6 and 3A4 by metamizole. Clin Pharmacol Ther 82:265–274PubMedCrossRefGoogle Scholar
  496. Schmider J, Greenblatt DJ, Fogelman SM et al (1997) Metabolism of dextromethorphan in vitro: involvement of cytochromes P450 2D6 and 3A3/4, with a possible role of 2E1. Biopharm Drug Dispos 18:227–240PubMedCrossRefGoogle Scholar
  497. Schmider J, von Moltke LL, Shader RI et al (1999) Extrapolating in vitro data on drug metabolism to in vivo pharmacokinetics: evaluation of the pharmacokinetic interaction between amitriptyline and fluoxetine. Drug Metab Rev 31:545–560PubMedCrossRefGoogle Scholar
  498. Schmiedlin-Ren P, Thummel KE, Fisher JM et al (1997) Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1a, 25-dihydroxyvitamin D3. Mol Pharmacol 51:741–754PubMedGoogle Scholar
  499. Schneck DW, Birmingham BK, Zalikowski JA et al (2004) The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther 75:455–463PubMedCrossRefGoogle Scholar
  500. Schuetz JD, Beach DL, Guzelian PS (1994) Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 4:11–20PubMedCrossRefGoogle Scholar
  501. Schuster D, Langer T (2005) The identification of ligand features essential for PXR activation by pharmacophore modeling. J Chem Inf Model 45:431–439PubMedCrossRefGoogle Scholar
  502. Schuster D, Steindl TM, Langer T (2006) Predicting drug metabolism induction in silico. Curr Top Med Chem 6:1627–1640PubMedCrossRefGoogle Scholar
  503. Scott EE, Halpert JR (2005) Structures of cytochrome P450 3A4. Trends Biochem Sci 30:5–7PubMedCrossRefGoogle Scholar
  504. Seidel SD, Li V, Winter GM et al (2000) Ah receptor-based chemical screening bioassays: application and limitations for the detection of Ah receptor agonists. Toxicol Sci 55:107–115PubMedCrossRefGoogle Scholar
  505. Seliskar M, Rozman D (2007) Mammalian cytochromes P450—importance of tissue specificity. Biochim Biophys Acta 1770:458–466PubMedGoogle Scholar
  506. Sesardic D, Boobis AR, Edwards RJ et al (1988) A form of cytochrome P450 in man, orthologous to form d in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol 26:363–372PubMedGoogle Scholar
  507. Sesardic D, Pasanen M, Pelkonen O et al (1990) Differential expression and regulation of members of the cytochrome P450IA gene subfamily in human tissues. Carcinogenesis 11:1183–1188PubMedCrossRefGoogle Scholar
  508. Shadle CR, Lee Y, Majumdar AK et al (2004) Evaluation of potential inductive effects of aprepitant on cytochrome P450 3A4 and 2C9 activity. J Clin Pharmacol 44:215–223PubMedCrossRefGoogle Scholar
  509. Shan L, Vincent J, Brunzelle JS et al (2004) Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism. Mol Cell 16:907–917PubMedGoogle Scholar
  510. Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553PubMedCrossRefGoogle Scholar
  511. Shet MS, McPhaul M, Fisher CW et al (1997) Metabolism of the antiandrogenic drug (Flutamide) by human CYP1A2. Drug Metab Dispos 25:1298–1303PubMedGoogle Scholar
  512. Shimada T, Hayes CL, Yamazaki H et al (1996a) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res 56:2979–2984PubMedGoogle Scholar
  513. Shimada T, Yamazaki H, Guengerich FP (1996b) Ethnic-related differences in coumarin 7-hydroxylation activities catalyzed by cytochrome P4502A6 in liver microsomes of Japanese and Caucasian populations. Xenobiotica 26:395–403PubMedGoogle Scholar
  514. Shitara Y, Hirano M, Sato H et al (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 311:228–236PubMedCrossRefGoogle Scholar
  515. Simonsson US, Jansson B, Hai TN et al (2003) Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 74:32–43PubMedCrossRefGoogle Scholar
  516. Sinz M, Kim S, Zhu Z et al (2006) Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr Drug Metab 7:375–388PubMedCrossRefGoogle Scholar
  517. Slattery JT, Kalhorn TF, McDonald GB et al (1996) Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J Clin Oncol 14:1484–1494PubMedGoogle Scholar
  518. Smith DA (2000) Induction and drug development. Eur J Pharm Sci 11:185–189PubMedCrossRefGoogle Scholar
  519. Smith GB, Bend JR, Bedard LL et al (2003a) Biotransformation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in peripheral human lung microsomes. Drug Metab Dispos 31:1134–1141PubMedCrossRefGoogle Scholar
  520. Smith G, Wolf CR, Deeni YY et al (2003b) Cutaneous expression of cytochrome P450 CYP2S1: individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Lancet 361:1336–1343PubMedCrossRefGoogle Scholar
  521. Smith G, Ibbotson SH, Comrie MM et al (2006) Regulation of cutaneous drug-metabolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br J Dermatol 155:275–281PubMedCrossRefGoogle Scholar
  522. Smith DA, Dickins M, Fahmi OA et al (2007) The time to move cytochrome p450 induction into mainstream pharmacology is long overdue. Drug Metab Dispos 35:697–698PubMedCrossRefGoogle Scholar
  523. Soars MG, Petullo DM, Eckstein JA et al (2004) An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos 32:140–148PubMedCrossRefGoogle Scholar
  524. Soars MG, Grime K, Riley RJ (2006) Comparative analysis of substrate and inhibitor interactions with CYP3A4 and CYP3A5. Xenobiotica 36:287–299PubMedCrossRefGoogle Scholar
  525. Solas C, Poizot-Martin I, Drogoul MP et al (2004) Therapeutic drug monitoring of lopinavir/ritonavir given alone or with a non-nucleoside reverse transcriptase inhibitor. Br J Clin Pharmacol 57:436–440PubMedCrossRefGoogle Scholar
  526. Song BJ, Veech RL, Park SS et al (1989) Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J Biol Chem 264:3568–3572PubMedGoogle Scholar
  527. Sotaniemi EA, Rautio A, Backstrom M et al (1995) CYP3A4 and CYP2A6 activities marked by the metabolism of lignocaine and coumarin in patients with liver and kidney diseases and epileptic patients. Br J Clin Pharmacol 39:71–76PubMedGoogle Scholar
  528. Soyama A, Hanioka N, Saito Y et al (2002) Amiodarone N-deethylation by CYP2C8 and its variants, CYP2C8*3 and CYP2C8 P404A. Pharmacol Toxicol 91:174–178PubMedCrossRefGoogle Scholar
  529. Spaldin V, Madden S, Adams DA et al (1995) Determination of human hepatic cytochrome P4501A2 activity in vitro use of tacrine as an isoenzyme-specific probe. Drug Metab Dispos 23:929–934PubMedGoogle Scholar
  530. Squires EJ, Sueyoshi T, Negishi M (2004) Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J Biol Chem 279: 49307–49314PubMedCrossRefGoogle Scholar
  531. Staiger C, Schlicht F, Walter E et al (1983) Effect of single and multiple doses of sulphinpyrazone on antipyrine metabolism and urinary excretion of 6-beta-hydroxycortisol. Eur J Clin Pharmacol 25:797–801PubMedCrossRefGoogle Scholar
  532. Stanley LA, Horsburgh BC, Ross J et al (2006) PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 38:515–597PubMedCrossRefGoogle Scholar
  533. Staudinger JL, Goodwin B, Jones SA et al (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 98:3369–3374PubMedCrossRefGoogle Scholar
  534. Stearns RA, Chakravarty PK, Chen R et al (1995) Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab Dispos 23:207–215PubMedGoogle Scholar
  535. Stevens JC, White RB, Hsu SH et al (1997) Human liver CYP2B6-catalyzed hydroxylation of RP 73401. J Pharmacol Exp Ther 282:1389–1395PubMedGoogle Scholar
  536. Störmer E, von Moltke LL, Shader RI et al (2000) Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 28:1168–1175PubMedGoogle Scholar
  537. Sueyoshi T, Kawamoto T, Zelko I et al (1999) The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem 274:6043–6046PubMedCrossRefGoogle Scholar
  538. Suino K, Peng L, Reynolds R et al (2004) The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. Mol Cell 16:893–905PubMedGoogle Scholar
  539. Sumida A, Fukuen S, Yamamoto I et al (2000) Quantitative analysis of constitutive and inducible CYPs mRNA expression in the HepG2 cell line using reverse transcription-competitive PCR. Biochem Biophys Res Commun 267:756–760PubMedCrossRefGoogle Scholar
  540. Sun X, Li F, Wang YJ et al (2004) Development of an exonuclease protection mediated PCR bioassay for sensitive detection of Ah receptor agonists. Toxicol Sci 80:49–53PubMedCrossRefGoogle Scholar
  541. Sustiva (2007) Electronic Medicines compendium (eMC). Available at Accessed 5 April 2008
  542. Sutter TR, Tang YM, Hayes CL et al (1994) Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J Biol Chem 269:13092–13099PubMedGoogle Scholar
  543. Svensson US, Ashton M, Trinh NH et al (1998) Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 64:160–167PubMedCrossRefGoogle Scholar
  544. Svensson US, Ashton M (1999) Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol 48:528–535PubMedCrossRefGoogle Scholar
  545. Taavitsainen P, Juvonen R, Pelkonen O (2001) In vitro inhibition of cytochrome P450 enzymes in human liver microsomes by a potent CYP2A6 inhibitor, trans–2-phenylcyclopropylamine (tranylcypromine), and its nonamine analog, cyclopropylbenzene. Drug Metab Dispos 29:217–222PubMedGoogle Scholar
  546. Takagi S, Nakajima M, Mohri T et al (2008) Post-transcriptional Regulation of Human Pregnane X Receptor by Micro-RNA Affects the Expression of Cytochrome P450 3A4. J Biol Chem 283:9674–9680PubMedCrossRefGoogle Scholar
  547. Takahashi T, Lasker JM, Rosman AS et al (1993) Induction of cytochrome P-4502E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 17:236–245PubMedGoogle Scholar
  548. Tang C, Lin JH, Lu AY (2005) Metabolism-based drug–drug interactions: what determines individual variability in cytochrome P450 induction? Drug Metab Dispos 33:603–613PubMedCrossRefGoogle Scholar
  549. Tarrus E, Cami J, Roberts DJ et al (1987) Accumulation of caffeine in healthy volunteers treated with furafylline. Br J Clin Pharmacol 23:9–18PubMedGoogle Scholar
  550. Tassaneeyakul W, Mohamed Z, Birkett DJ et al (1992) Caffeine as a probe for human cytochromes P450: validation using cDNA-expression, immunoinhibition and microsomal kinetic and inhibitor techniques. Pharmacogenetics 2:173–183PubMedCrossRefGoogle Scholar
  551. Tassaneeyakul W, Birkett DJ, Veronese ME et al (1993a) Specificity of substrate and inhibitor probes for human cytochromes P450 1A1 and 1A2. J Pharmacol Exp Ther 265:401–407PubMedGoogle Scholar
  552. Tassaneeyakul W, Veronese ME, Birkett DJ et al (1993b) Validation of 4-nitrophenol as an in vitro substrate probe for human liver CYP2E1 using cDNA expression and microsomal kinetic techniques. Biochem Pharmacol 46:1975–1981PubMedCrossRefGoogle Scholar
  553. Tassaneeyakul W, Guo LQ, Fukuda K et al (2000) Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 378:356–363PubMedCrossRefGoogle Scholar
  554. Tateishi T, Krivoruk Y, Ueng YF et al (1996) Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 82:167–172PubMedCrossRefGoogle Scholar
  555. Tateno C, Yoshizane Y, Saito N et al (2004) Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol 165:901–912PubMedGoogle Scholar
  556. Thum T, Erpenbeck VJ, Moeller J et al (2006) Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. Environ Health Perspect 114:1655–1661PubMedGoogle Scholar
  557. Timsit YE, Negishi M (2007) CAR and PXR: the xenobiotic-sensing receptors. Steroids 72:231–246PubMedCrossRefGoogle Scholar
  558. Tirona RG, Lee W, Leake BF et al (2003) The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med 9:220–224PubMedCrossRefGoogle Scholar
  559. Tjia JF, Colbert J, Back DJ (1996) Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther 276:912–917PubMedGoogle Scholar
  560. Tornheim K (1994) Kinetic applications using high substrate and competitive inhibitor concentrations to determine Ki or Km. Anal Biochem 221:53–56PubMedCrossRefGoogle Scholar
  561. Totah RA, Rettie AE (2005) Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 77:341–352PubMedCrossRefGoogle Scholar
  562. Tracy TS, Marra C, Wrighton SA et al (1996) Studies of flurbiprofen 4′-hydroxylation. Additional evidence suggesting the sole involvement of cytochrome P450 2C9. Biochem Pharmacol 52:1305–1309PubMedCrossRefGoogle Scholar
  563. Tracy TS, Marra C, Wrighton SA et al (1997) Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation. Eur J Clin Pharmacol 52:293–298PubMedCrossRefGoogle Scholar
  564. Trubetskoy O, Marks B, Zielinski T et al (2005) A simultaneous assessment of CYP3A4 metabolism and induction in the DPX-2 cell line. AAPS J 7:E6–E13PubMedCrossRefGoogle Scholar
  565. Tsutsumi M, Lasker JM, Shimizu M et al (1989) The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 10:437–446PubMedCrossRefGoogle Scholar
  566. Tsyrlov IB, Goldfarb IS, Gelboin HV (1993) Enzyme-kinetic and immunochemical characteristics of mouse cDNA-expressed, microsomal, and purified CYP1A1 and CYP1A2. Arch Biochem Biophys 307:259–266PubMedCrossRefGoogle Scholar
  567. Tucker GT (1992) The rational selection of drug interaction studies: implications of recent advances in drug metabolism. Int J Clin Pharmacol Ther Toxicol 30:550–553PubMedGoogle Scholar
  568. Tucker GT, Houston JB, Huang SM (2001) Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential–towards a consensus. Br J Clin Pharmacol 52:107–117PubMedCrossRefGoogle Scholar
  569. Tugnait M, Hawes EM, McKay G et al (1999) Characterization of the human hepatic cytochromes P450 involved in the in vitro oxidation of clozapine. Chem Biol Interact 118:171–189PubMedCrossRefGoogle Scholar
  570. Turpeinen M, Nieminen R, Juntunen T et al (2004) Selective inhibition of CYP2B6-catalyzed bupropion hydroxylation in human liver microsomes in vitro. Drug Metab Dispos 32:626–631PubMedCrossRefGoogle Scholar
  571. Turpeinen M, Uusitalo J, Jalonen J et al (2005a) Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay. Eur J Pharm Sci 24:123–132PubMedCrossRefGoogle Scholar
  572. Turpeinen M, Tolonen A, Uusitalo J et al (2005b) Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther 77:553–559PubMedCrossRefGoogle Scholar
  573. Turpeinen M, Raunio H, Pelkonen O (2006) The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Curr Drug Metab 7:705–714PubMedCrossRefGoogle Scholar
  574. Udall JA (1975) Clinical implications of warfarin interactions with five sedatives. Am J Cardiol 35:67–71PubMedCrossRefGoogle Scholar
  575. Ung CY, Li H, Yap CW et al (2007) In silico prediction of pregnane X receptor activators by machine learning approaches. Mol Pharmacol 71:158–168PubMedCrossRefGoogle Scholar
  576. Valero F, de la Torre R, Segura J (1991) Selective in-vitro inhibition of hepatic oxidative metabolism by quinolones: 7-ethoxyresorufin and caffeine as model substrates. J Pharm Pharmacol 43:17–21PubMedGoogle Scholar
  577. van Duijnhoven EM, Boots JM, Christiaans MH et al (2003) Increase in tacrolimus trough levels after steroid withdrawal. Transpl Int 16:721–725PubMedGoogle Scholar
  578. van Giersbergen PL, Gnerre C, Treiber A et al (2002a) Bosentan, a dual endothelin receptor antagonist, activates the pregnane X nuclear receptor. Eur J Pharmacol 450:115–121PubMedCrossRefGoogle Scholar
  579. van Giersbergen PL, Treiber A, Clozel M et al (2002b) In vivo and in vitro studies exploring the pharmacokinetic interaction between bosentan, a dual endothelin receptor antagonist, and glyburide. Clin Pharmacol Ther 71:253–262PubMedCrossRefGoogle Scholar
  580. van Leeuwen DM, van Agen E, Gottschalk RW et al (2007) Cigarette smoke-induced differential gene expression in blood cells from monozygotic twin pairs. Carcinogenesis 28:691–697PubMedCrossRefGoogle Scholar
  581. Vedani A, Dobler M, Lill MA (2006) The challenge of predicting drug toxicity in silico. Basic Clin Pharmacol Toxicol 99:195–208PubMedCrossRefGoogle Scholar
  582. Vermeir M, Annaert P, Mamidi RN et al (2005) Cell-based models to study hepatic drug metabolism and enzyme induction in humans. Expert Opin Drug Metab Toxicol 1:75–90PubMedCrossRefGoogle Scholar
  583. Veronese ME, Mackenzie PI, Doecke CJ et al (1991) Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochem Biophys Res Commun 175:1112–1118PubMedCrossRefGoogle Scholar
  584. Vesell ES, Page JG (1969) Genetic control of the phenobarbital-induced shortening of plasma antipyrine half-lives in man. J Clin Invest 48:2202–2209PubMedCrossRefGoogle Scholar
  585. Vickers AE, Sinclair JR, Zollinger M et al (1999) Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug–drug interactions. Drug Metab Dispos 27:1029–1038PubMedGoogle Scholar
  586. Vignati LA, Bogni A, Grossi P et al (2004) A human and mouse pregnane X receptor reporter gene assay in combination with cytotoxicity measurements as a tool to evaluate species-specific CYP3A induction. Toxicology 199:23–33PubMedCrossRefGoogle Scholar
  587. Villikka K, Kivisto KT, Neuvonen PJ (1998) The effect of dexamethasone on the pharmacokinetics of triazolam. Pharmacol Toxicol 83:135–138PubMedGoogle Scholar
  588. Villikka K, Varis T, Backman JT et al (2001) Effect of methylprednisolone on CYP3A4-mediated drug metabolism in vivo. Eur J Clin Pharmacol 57:457–460PubMedCrossRefGoogle Scholar
  589. von Moltke LL, Greenblatt DJ, Harmatz JS et al (1993) Alprazolam metabolism in vitro: studies of human, monkey, mouse, and rat liver microsomes. Pharmacology 47:268–276CrossRefGoogle Scholar
  590. von Moltke LL, Greenblatt DJ, Schmider J et al (1996a) Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 36:783–791Google Scholar
  591. von Moltke LL, Greenblatt DJ, Harmatz JS et al (1996b) Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 276:370–379Google Scholar
  592. von Moltke LL, Greenblatt DJ, Duan SX et al (1998a) Inhibition of desipramine hydroxylation (Cytochrome P450–2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci 87:1184–1189CrossRefGoogle Scholar
  593. von Moltke LL, Greenblatt DJ, Schmider J et al (1998b) In vitro approaches to predicting drug interactions in vivo. Biochem Pharmacol 55:113–122CrossRefGoogle Scholar
  594. von Richter O, Burk O, Fromm MF et al (2004) Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 75:172–183CrossRefGoogle Scholar
  595. Wacher VJ, Wu CY, Benet LZ (1995) Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 13:129–134PubMedCrossRefGoogle Scholar
  596. Waller CL, McKinney JD (1992) Comparative molecular field analysis of polyhalogenated dibenzo-p-dioxins, dibenzofurans, and biphenyls. J Med Chem 35:3660–3666PubMedCrossRefGoogle Scholar
  597. Wallin H, Skipper PL, Tannenbaum SR et al (1995) Altered aromatic amine metabolism in epileptic patients treated with phenobarbital. Cancer Epidemiol Biomarkers Prev 4:771–773PubMedGoogle Scholar
  598. Walsky RL, Obach RS (2004) Validated assays for human cytochrome P450 activities. Drug Metab Dispos 32:647–660PubMedCrossRefGoogle Scholar
  599. Walsky RL, Gaman EA, Obach RS (2005a) Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol 45:68–78PubMedCrossRefGoogle Scholar
  600. Walsky RL, Obach RS, Gaman EA et al (2005b) Selective inhibition of human cytochrome P4502C8 by montelukast. Drug Metab Dispos 33:413–418PubMedCrossRefGoogle Scholar
  601. Wang RW, Kari PH, Lu AY et al (1991) Biotransformation of lovastatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 290:355–361PubMedCrossRefGoogle Scholar
  602. Wang RW, Newton DJ, Scheri TD et al (1997) Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab Dispos 25:502–507Google Scholar
  603. Wang JS, Backman JT, Taavitsainen P et al (2000a) Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos 28:959–965PubMedGoogle Scholar
  604. Wang RW, Newton DJ, Liu N et al (2000b) Human cytochrome P-450 3A4: in vitro drug–drug interaction patterns are substrate-dependent. Drug Metab Dispos 28:360–366PubMedGoogle Scholar
  605. Wang JS, Neuvonen M, Wen X et al (2002) Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 30:1352–1356PubMedCrossRefGoogle Scholar
  606. Wang LS, Zhou G, Zhu B et al (2004a) St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 75:191–197PubMedCrossRefGoogle Scholar
  607. Wang LS, Zhu B, Abd El-Aty AM et al (2004b) The influence of St John’s Wort on CYP2C19 activity with respect to genotype. J Clin Pharmacol 44:577–581PubMedCrossRefGoogle Scholar
  608. Wang YH, Jones DR, Hall SD (2005) Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos 33:664–671PubMedCrossRefGoogle Scholar
  609. Wang K, Mendy AJ, Dai G et al (2006) Retinoids activate the RXR/SXR-mediated pathway and induce the endogenous CYP3A4 activity in Huh7 human hepatoma cells. Toxicol Sci 92:51–60PubMedCrossRefGoogle Scholar
  610. Ward BA, Gorski JC, Jones DR et al (2003) The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 306:287–300PubMedCrossRefGoogle Scholar
  611. Warrington JS, Shader RI, von Moltke LL et al (2000) In vitro biotransformation of sildenafil (Viagra): identification of human cytochromes and potential drug interactions. Drug Metab Dispos 28:392–397PubMedGoogle Scholar
  612. Watkins PB, Murray SA, Winkelman LG et al (1989) Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. Studies in rats and patients. J Clin Invest 83:688–697PubMedCrossRefGoogle Scholar
  613. Watkins RE, Wisely GB, Moore LB et al (2001) The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292:2329–2333PubMedCrossRefGoogle Scholar
  614. Waxman DJ, Lapenson DP, Aoyama T et al (1991) Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s. Arch Biochem Biophys 290:160–166PubMedCrossRefGoogle Scholar
  615. Weber C, Banken L, Birnboeck H et al (1999) Effect of the endothelin-receptor antagonist bosentan on the pharmacokinetics and pharmacodynamics of warfarin. J Clin Pharmacol 39:847–854PubMedCrossRefGoogle Scholar
  616. Wei C, Caccavale RJ, Weyand EH et al (2002) Induction of CYP1A1 and CYP1A2 expressions by prototypic and atypical inducers in the human lung. Cancer Lett 178:25–36PubMedCrossRefGoogle Scholar
  617. Wen X, Wang JS, Backman JT et al (2002) Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab Dispos 30:631–635PubMedCrossRefGoogle Scholar
  618. Westerink WM, Schoonen WG (2007) Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro 21:1581–1591PubMedCrossRefGoogle Scholar
  619. Westlind-Johnsson A, Malmebo S, Johansson A et al (2003) Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab Dispos 31:755–761PubMedCrossRefGoogle Scholar
  620. Whyte JJ, Schmitt CJ, Tillitt DE (2004) The H4IIE cell bioassay as an indicator of dioxin-like chemicals in wildlife and the environment. Crit Rev Toxicol 34:1–83PubMedCrossRefGoogle Scholar
  621. Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833PubMedCrossRefGoogle Scholar
  622. Wietholtz H, Zysset T, Kreiten K et al (1989) Effect of phenytoin, carbamazepine, and valproic acid on caffeine metabolism. Eur J Clin Pharmacol 36:401–406PubMedCrossRefGoogle Scholar
  623. Wild MJ, McKillop D, Butters CJ (1999) Determination of the human cytochrome P450 isoforms involved in the metabolism of zolmitriptan. Xenobiotica 29:847–857PubMedCrossRefGoogle Scholar
  624. Williamson KM, Patterson JH, McQueen RH et al (1998) Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 63:316–323PubMedCrossRefGoogle Scholar
  625. Williams JA, Ring BJ, Cantrell VE et al (2002) Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 30:883–891PubMedCrossRefGoogle Scholar
  626. Windshügel B, Jyrkkärinne J, Vanamo J et al (2007) Comparison of homology models and X-ray structures of the nuclear receptor CAR: assessing the structural basis of constitutive activity. J Mol Graph Model 25:644–657PubMedCrossRefGoogle Scholar
  627. Wing LM, Miners JO, Lillywhite KJ (1985) Verapamil disposition—effects of sulphinpyrazone and cimetidine. Br J Clin Pharmacol 19:385–391PubMedGoogle Scholar
  628. Wójcikowski J, Maurel P, Daniel W (2006) Characterization of human cytochrome p450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine. Drug Metab Dispos 34:471–476PubMedGoogle Scholar
  629. Wrighton SA, Brian WR, Sari MA et al (1990) Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 38:207–213PubMedGoogle Scholar
  630. Wu CY, Benet LZ, Hebert MF et al (1995) Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 58:492–497PubMedCrossRefGoogle Scholar
  631. Xiao L, Cui X, Madison V et al (2002) Insights from a three-dimensional model into ligand binding to constitutive active receptor. Drug Metab Dispos 30:951–956PubMedCrossRefGoogle Scholar
  632. Xie W, Barwick JL, Downes M et al (2000) Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 406:435–439PubMedCrossRefGoogle Scholar
  633. Xie W, Radominska-Pandya A, Shi Y et al (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci USA 98:3375–3380PubMedCrossRefGoogle Scholar
  634. Xu RX, Lambert MH, Wisely BB et al (2004) A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol Cell 16:919–928PubMedCrossRefGoogle Scholar
  635. Xue Y, Moore LB, Orans J, Peng L, Bencharit S, Kliewer SA, Redinbo MR (2007) Crystal structure of the pregnane X receptor-estradiol complex provides insights into endobiotic recognition. Mol Endocrinol 21:1028–1038PubMedCrossRefGoogle Scholar
  636. Yamanaka H, Nakajima M, Fukami T et al (2005) CYP2A6 and CYP2B6 are involved in nornicotine formation from nicotine in humans: interindividual differences in these contributions. Drug Metab Dispos 33:1811–1818PubMedGoogle Scholar
  637. Yamano S, Tatsuno J, Gonzalez FJ (1990) The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry 29:1322–1329PubMedCrossRefGoogle Scholar
  638. Yamazaki H, Hiroki S, Urano T et al (1996) Effects of roxithromycin, erythromycin and troleandomycin on their N-demethylation by rat and human cytochrome P450 enzymes. Xenobiotica 26:1143–1153PubMedCrossRefGoogle Scholar
  639. Yamazaki H, Inoue K, Chiba K et al (1998) Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem Pharmacol 56:243–251PubMedCrossRefGoogle Scholar
  640. Yamazaki H, Shimada T (1998) Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab Dispos 26:1053–1057PubMedGoogle Scholar
  641. Yanagihara Y, Kariya S, Ohtani M et al (2001) Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 29:887–890PubMedGoogle Scholar
  642. Yao D, Ding S, Burchell B et al (2000) Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: implications for the development of drug resistance. J Pharmacol Exp Ther 294:387–395PubMedGoogle Scholar
  643. Yasar U, Tybring G, Hidestrand M et al (2001) Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 29:1051–1056PubMedGoogle Scholar
  644. Yasumori T, Li QH, Yamazoe Y et al (1994) Lack of low Km diazepam N-demethylase in livers of poor metabolizers for S-mephenytoin 4′-hydroxylation. Pharmacogenetics 4:323–331PubMedCrossRefGoogle Scholar
  645. Yeh RF, Gaver VE, Patterson KB et al (2006) Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr 42:52–60PubMedGoogle Scholar
  646. Yeo KR, Yeo WW (2001) Inhibitory effects of verapamil and diltiazem on simvastatin metabolism in human liver microsomes. Br J Clin Pharmacol 51:461–470PubMedCrossRefGoogle Scholar
  647. Yoshida N, Oda Y, Nishi S et al (1993) Effect of barbiturate therapy on phenytoin pharmacokinetics. Crit Care Med 21:1514–1522PubMedCrossRefGoogle Scholar
  648. Yoshinari K, Kobayashi K, Moore R et al (2003) Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Lett 548:17–20PubMedCrossRefGoogle Scholar
  649. You F, Zhou YF, Zhang XE et al (2006) Cell-free bioassay for measurement of dioxins based on fluorescence enhancement of fluorescein isothiocyanate-labeled DNA probe. Anal Chem 78:7138–7144PubMedCrossRefGoogle Scholar
  650. Yuan R, Parmelee T, Balian JD et al (1999) In vitro metabolic interaction studies: experience of the Food and Drug Administration. Clin Pharmacol Ther 66:9–15PubMedCrossRefGoogle Scholar
  651. Yuan R, Madani S, Wei XX et al (2002) Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 30:1311–1319PubMedCrossRefGoogle Scholar
  652. Yueh MF, Kawahara M, Raucy J (2005) Cell-based high-throughput bioassays to assess induction and inhibition of CYP1A enzymes. Toxicol In Vitro 19:275–287PubMedCrossRefGoogle Scholar
  653. Zand R, Nelson SD, Slattery JT et al (1993) Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 54:142–149PubMedGoogle Scholar
  654. Zanger UM, Raimundo S, Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 369:23–37PubMedCrossRefGoogle Scholar
  655. Zanger UM, Klein K, Saussele T et al (2007) Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics 8:743–759PubMedCrossRefGoogle Scholar
  656. Zelko I, Sueyoshi T, Kawamoto T et al (2001) The peptide near the C terminus regulates receptor CAR nuclear translocation induced by xenochemicals in mouse liver. Mol Cell Biol 21:2838–2846PubMedCrossRefGoogle Scholar
  657. Zhang L, Fitzloff JF, Engel LC et al (2001a) Species difference in stereoselective involvement of CYP3A in the mono-N-dealkylation of disopyramide. Xenobiotica 31:73–83PubMedCrossRefGoogle Scholar
  658. Zhang W, Kilicarslan T, Tyndale RF et al (2001b) Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab Dispos 29:897–902PubMedGoogle Scholar
  659. Zhang ZY, Pelletier RD, Wong YN et al (2006) Preferential inducibility of CYP1A1 and CYP1A2 by TCDD: differential regulation in primary human hepatocytes versus transformed human cells. Biochem Biophys Res Commun 34:399–407CrossRefGoogle Scholar
  660. Zhang H, Cui D, Wang B et al (2007) Pharmacokinetic drug interactions involving 17alpha-ethinylestradiol: a new look at an old drug. Clin Pharmacokinet 46:133–157PubMedCrossRefGoogle Scholar
  661. Zhou S, Chan E, Pan SQ et al (2004) Pharmacokinetic interactions of drugs with St John’s wort. J Psychopharmacol 18:262–276PubMedCrossRefGoogle Scholar
  662. Zhou C, Assem M, Tay JC et al (2006) Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest 116:1703–1712PubMedCrossRefGoogle Scholar
  663. Zhu Z, Kim S, Chen T et al (2004) Correlation of high-throughput pregnane X receptor (PXR) transactivation and binding assays. J Biomol Screen 9:533–540PubMedCrossRefGoogle Scholar
  664. Zhu M, Zhao W, Jimenez H et al (2005) Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes. Drug Metab Dispos 33:500–507PubMedCrossRefGoogle Scholar
  665. Zilly W, Breimer DD, Richter E (1975) Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. Eur J Clin Pharmacol 9:219–227PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Olavi Pelkonen
    • 1
    Email author
  • Miia Turpeinen
    • 1
    • 2
    • 3
  • Jukka Hakkola
    • 1
  • Paavo Honkakoski
    • 4
  • Janne Hukkanen
    • 5
  • Hannu Raunio
    • 6
  1. 1.Department of Pharmacology and Toxicology, Institute of BiomedicineUniversity of OuluOuluFinland
  2. 2.Dr. Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
  3. 3.Department of Clinical PharmacologyUniversity of TübingenTübingenGermany
  4. 4.Department of PharmaceuticsUniversity of KuopioKuopioFinland
  5. 5.Department of Internal MedicineOulu University HospitalOuluFinland
  6. 6.Department of Pharmacology and ToxicologyUniversity of KuopioKuopioFinland

Personalised recommendations