Advertisement

Archives of Toxicology

, 83:81 | Cite as

β-Glucan extracted from the medicinal mushroom Agaricus blazei prevents the genotoxic effects of benzo[a]pyrene in the human hepatoma cell line HepG2

  • José Pedro Friedmann Angeli
  • Lúcia Regina Ribeiro
  • Marilanda Ferreira Bellini
  • Mário Sérgio Mantovani
Genotoxicity and Carcinogenicity

Abstract

The mushroom Agaricus blazei is studied for its nutraceutical potential and as a medicinal supplement. The aim of the present study was to investigate the chemoprotective effect of β-glucan extracted from the mushroom A. blazei against DNA damage induced by benzo[a]pyrene (B[a]P), using the comet assay (genotoxicity) and micronucleus assay with cytokinesis block (mutagenicity) in a human hepatoma cell line (HepG2). To elucidate the possible β-glucan mechanism of action, desmutagenesis or bioantimutagenesis types, three treatment protocols were tested: simultaneous, pre-treatment, and presimultaneous. The results showed that β-glucan does not exert genotoxic or mutagenic effect, but that it does protect against DNA damage caused by B[a]P in every protocol tested. The data suggest that β-glucan acts through binding to B[a]P or the capture of free radicals produced during its activation. On the other hand, the pre-treatment results also suggest the possibility that β-glucan modulates cell metabolism.

Keywords

β-Glucan Comet assay Micronucleus assay HepG2 Antigenotoxicity Antimutagenicity 

Notes

Acknowledgments

We thank FAEPE/UEL, CNPq, and CAPES for financial support and grants. We also thank Prof. Sandra S. Soares for donating the samples of β-glucan. We are grateful to Dr A. Leyva for English editing of the manuscript.

References

  1. Angeli JPL, Ribeiro LR, Gonzaga MLC, Soares SA, Ricardo MPSN, Tsuboy MS, Stidl R, Knasmuller S, Linhares RE, Mantovani MS (2006) Protective effects of β-glucan extracted from Agaricus brasiliensis against chemically induced DNA damage in human lymphocytes. Cell Biol Toxicol 22:285–291PubMedCrossRefGoogle Scholar
  2. Bellini MF, Angeli JP, Matuo R, Terezan AP, Ribeiro LR, Mantovani MS (2006) Antigenotoxicity of Agaricus blazei mushroom organic and aqueous extracts in chromosomal aberration and cytokinesis block micronucleus assays in CHO-k1 and HTC cells. Toxicol In Vitro 20:355–360PubMedCrossRefGoogle Scholar
  3. Briede JJ, Godschalk RW, Emans MT, De Kok TM, Van Maanen J, Van Schooten FJ, Kleinjans JC (2004) In vitro and in vivo studies on oxygen free radical and DNA adduct formation in rat lung and liver during benzo[a]pyrene metabolism. Free Radic Res 38:995–1002PubMedCrossRefGoogle Scholar
  4. Chovartovicova D, Machova E, Sandula J, Kogan G (1999) Protective effect of the yeast glucomannan against cyclophosphamide-induced mutagenicity. Mutat Res 444:117–122Google Scholar
  5. Darroudi F, Natarajan AT (1991) Use of human hepatoma cells for in vitro metabolic activation of chemical mutagens/carcinogens. Mutagenesis 6:339–403Google Scholar
  6. Eastmond DA, Tucker JD (1989) Kinetochore localization in micronucleated cytokinesis-blocked Chinese hamster ovary cells: a new and rapid assay for identifying aneuploidy-inducing agents. Mutat Res 224:517–525PubMedCrossRefGoogle Scholar
  7. Ferguson LR, Roberton AM, Watson ME, Kestell P, Harris PJ (1993) The adsorption of a range of dietary carcinogens by alpha-cellulose, a model insoluble dietary fiber. Mutat Res 319:257–266PubMedCrossRefGoogle Scholar
  8. Ferrari CKB, Torres EAFS (2003) Biochemical pharmacology of functional foods and prevention of chronic diseases of aging. Biomed Pharmacother 57:251–260PubMedCrossRefGoogle Scholar
  9. Fujimiya Y, Suzuki T, Oshiman K, Kobori H, Moriguchu K, Nakashima H, Matumoto Y, Takahara S, Ebina T, Katakura R (1998) Selective tumoricidal effect of soluble proteoglucan exctracted from Basidiomycetes, Agaricus blazei Murill, mediated via natural killer cell activation apoptosis. Cancer Immunol Immunother 46:147–159PubMedCrossRefGoogle Scholar
  10. Gonzaga MLC, Ricardo NMPS, Heatley F, Soares SA (2005) Isolation and characterization of polysaccharides from Agaricus blazei Murill. Carbohydr Polym 60:43–49CrossRefGoogle Scholar
  11. Hashimoto T, Nonaka Y, Minato K (2002) Suppressive effect of polysaccharides from the edible and medicinal mushrooms, Lentinus edodes and Agaricus blazei, on the expression of cytochrome P450 s in mice. Biosci Biotechnol Biochem 344:610–614Google Scholar
  12. Ito H, Shimura K, Itoh H, Kawadel M (1997) Antitumor effects of a new polysacharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade strain101) Himematsutake” and its mechanisms in tumour-bearing mice. Anticancer Res 17:277–284PubMedGoogle Scholar
  13. Kassie F, Rabot S, Uhl W, Huber M, Qin MH, Helma C, Schulte-Hermann R, Knasmuller S (2002) Chemoprotective effects of garden cress (Lepidium sativum) and its constituents towards 2-amino-3-methyl-imidazo[4, 5-f]quinoline (IQ)-induced genotoxic effects and colonic preneoplasic lesions. Carcinogenesis 23:1155–1161PubMedCrossRefGoogle Scholar
  14. Kawagishi H, Katsumi R, Sazawa T, Mizuno T, Hagiwara T, Nakamura T (1988) Citotoxic steroids from the mushroom Agaricus blazei. Phytochemistry 27:2777–2779CrossRefGoogle Scholar
  15. Kobayashi H, Sugiyama C, Morikawa Y, Hayashi M, Sofuni T (1995) A comparison between the manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis. MMS Commun 3:103–115Google Scholar
  16. Kobayashi H, Yoshida R, Kanada Y, Fukuda Y, Yagyu T, Inagaki K, Kondo T, Kurita N, Suzuki M, Kanayama N, Terano T (2005) Suppressing effect of daily oral supplementation of beta-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. J Cancer Res Clin Oncol 131:527–538PubMedCrossRefGoogle Scholar
  17. Krizkova L, Zitnanova I, Mislovicova D, Masarova J, Sasinkova V, Durackova Z, Krajcovica J (2006) Antioxidant and antimutagenic activity of mannan neoglycoconjugates: Mannan–human serum albumine and mannan–penicillin G acylase. Mutat Res 606:72–79PubMedGoogle Scholar
  18. Lee BM, Park K-K (2003) Beneficial and adverse effects of chemopreventive agents. Mutat Res 523–524:265–278PubMedGoogle Scholar
  19. Majer BJ, Hofer E, Cavin C, Lhoste E, Uhl M, Glatt HR, Meinl W, Knasmuller S (2005) Coffee diterpenes prevent the genotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) and N-nitrosodimethylamine in a human derived liver cell line (HepG2). Food Chem Toxicol 43:433–441PubMedCrossRefGoogle Scholar
  20. Mantovani MS, Bellini MF, Angeli JP, Oliveira RJ, Silva AF, Ribeiro LR (2008) beta-Glucans in promoting health: Prevention against mutation and cancer. Mutat Res 658:154–161PubMedCrossRefGoogle Scholar
  21. Mizuno T, Hagiwara T, Nakamura T, Ito H, Shimura K, Sumiya T, Asakura A (1990) Antitumour activity and some properties of water-soluble polysaccharides from “Himematsutake”, the fruiting body of Agaricus blazei Murill. Agric Biol Chem 54:2889–2896Google Scholar
  22. Okamoto T, Kodoi R, Nonaka Y (2004) Lentinan from shiitake mushroom (Lentinus edodes) suppresses expression of cytochrome P450 1A subfamily in the mouse liver. Biofactors 21:407–374PubMedCrossRefGoogle Scholar
  23. Oliveira RJ, Matuo R, Silva AF, Matiazi HJ, Mantovani MS, Ribeiro LR (2007) Protective effect of β-glucan extracted from Saccharomyces cerevisiae, against DNA damage and cytotoxicity in wild-type (K1) and repair-deficient (xrs5) CHO cells. Toxicol In Vitro 21:41–52PubMedCrossRefGoogle Scholar
  24. Speit G, Hartmann A (2005) The comet assay: a sensitive genotoxicity test for the detection of DNA damage. Methods Mol Biol 291:85–95PubMedGoogle Scholar
  25. Takaku T, Kimura T, Okuda H (2001) Isolation of an antitumour compound from Agaricus blazei Murill and its mechanism of action. J Nutr 131:1409–1413PubMedGoogle Scholar
  26. Talorete TPN, Isoda H, Maekawa T (2002) Agaricus blazei (class Basidiomycotina) aqueous extract enhances the expression of c-Jun protein in MCF7 cell. J Agric Food Chem 50:5162–5166PubMedCrossRefGoogle Scholar
  27. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221PubMedCrossRefGoogle Scholar
  28. Uhl M, Helma C, Knasmuller S (1999) Single cell gel electrophoresis assay with human-derived hepatoma (HepG2) cells. Mutat Res 441:215–224PubMedGoogle Scholar
  29. Uhl M, Helma C, Knasmuller S (2000) Evaluation of the single cell gel electrophoresis assay with human hepatoma (HepG2) cells. Mutat Res 468:213–225PubMedGoogle Scholar
  30. Walter-Sack I, Klotz U (1996) Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 31:47–64PubMedCrossRefGoogle Scholar
  31. Williams GM, Williams CM, Weisburger JH (1999) Diet and cancer prevention: the fiber first diet. Toxicol Sci 52:72–86PubMedGoogle Scholar
  32. Yoshioka Y, Tabeta R, Saito H, Uehara N, Fukuoka F (1985) Antitumor polysaccharide from P. ostreatus (FR.) QUÉL.: isolation and structure of a b-glucan. Carbohydr Res 140:93–100PubMedCrossRefGoogle Scholar
  33. Zekovic DB, Kwiatkowski S, Vrvic MM, Jakovljevic D, Moran CA (2005) Natural and modified (1 → 3)-β-D-Glucans in health promotion and disease alleviation. Crit Rev Biotechnol 25:205–230PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • José Pedro Friedmann Angeli
    • 1
  • Lúcia Regina Ribeiro
    • 2
    • 3
  • Marilanda Ferreira Bellini
    • 1
  • Mário Sérgio Mantovani
    • 1
  1. 1.Laboratório de Genética Toxicológica, Departamento de Biologia GeralUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Programa de Pós-Graduação em Patologia, Faculdade de MedicinaUNESPBotucatuBrazil
  3. 3.Programa de Pós-Graduação em Biologia Celular e Molecular, Depto. de BiologiaUNESPRio ClaroBrazil

Personalised recommendations