Advertisement

Archives of Toxicology

, Volume 82, Issue 9, pp 623–631 | Cite as

Promotion of hepatocarcinogenesis in humans and animal models

  • Christoph Köhle
  • Michael Schwarz
  • Karl Walter Bock
Genotoxicity and Carcinogenicity

Abstract

Risk assessment based on rodent carcinogenicity data depends on the assumption of similarity between rodents and humans. While this assumption is conceivable in the case of genotoxic initiating carcinogens, considerable species differences have been observed with nongenotoxic tumor promoters. This heterogeneous group of agents increases the probability of cancer by stimulating selection and clonal expansion of cells transformed during tumor initiation. Since tumor promoters differentially affect normal tissue and preneoplastic cell clones, their action cannot be discussed without knowledge of persistent genomic and epigenetic alterations occurring during initiation and formation of preneoplastic cells. Chemical carcinogenesis, and in particular, tumor promotion, is known to be tissue specific. We focus on hepatocarcinogenesis in humans and in animal models and emphasize two different modes of action: (1) chronic cytotoxicity leading to promotion of liver carcinogenesis in both humans and animal models; (2) sustained activation of orphan receptors such as CAR, PPARα and Ah receptor leading to promotion of rodent but probably not human hepatocarcinogenesis. Further studies on the different modes of action may help to avoid overestimation of the risk of liver tumor promotion.

Keywords

Hepatocarcinogenesis Tumor promoters Ethanol Phenobarbital TCDD 

Notes

Acknowledgments

We apologize for having often referred to reviews to keep the number of references to a minimum.

References

  1. Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85PubMedCrossRefGoogle Scholar
  2. Aydinlik H, Nguyen TD, Moennikes O, Buchmann A, Schwarz M (2001) Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of β-catenin-mutated mouse liver tumors. Oncogene 20:7812–7816PubMedCrossRefGoogle Scholar
  3. Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 391:499–510PubMedCrossRefGoogle Scholar
  4. Beebe LE, Fornwald LW, Diwan BA, Anver MR, Anderson LM (1995) Promotion of N-nitrosodiethylamine-initiated hepatocellular tumors and hepatoblastomas by 2,3,7,8-tetrachrlorodibenzo-p-dioxin or Arochlor 1254 in C57BL/6, DBA/2 and B6D2F1 mice. Cancer Res 55:4875–4880PubMedGoogle Scholar
  5. Bertazzi PA, Bernucci I, Brambilla G, Consonni D, Pesatori AC (1998) The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ Health Perspect 106(Suppl 2):625–633PubMedCrossRefGoogle Scholar
  6. Bock KW, Köhle C (2005) Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis. Biochem Pharmacol 69:1403–1408PubMedCrossRefGoogle Scholar
  7. Bock KW, Gschaidmeier H, Bock-Hennig BS, Eriksson LC (2000) Density-dependent growth of normal and nodular hepatocytes. Toxicology 144:51–56PubMedCrossRefGoogle Scholar
  8. Bosch FX, Ribes J, Borras J (1999) Epidemiology of primary liver cancer. Semin Liver Dis 19:271–285PubMedCrossRefGoogle Scholar
  9. Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S, Jeannot E, Herault A, Saric J, Belghiti J, Franco D, Biolac-Sage P, Laurent-Puig P, Zucman-Rossi J (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45:42–52PubMedCrossRefGoogle Scholar
  10. Buchmann A, Ziegler S, Wolf A, Robertson LW, Durham SK, Schwarz M (1991) Effects of polychlorinated biphenyls in rat liver: correlation between primary subcellular effects and promoting activity. Toxicol Appl Pharmacol 111:454–468PubMedCrossRefGoogle Scholar
  11. Buchmann A, Stinchcombe S, Körner W, Hagenmaier H, Bock KW (1994) Effects of 2,3,7,8-tetrachloro- and 1,2,3,6,7,8-heptachlorodibenzo-p-dioxin on the proliferation of preneoplastic liver cells in the rat. Carcinogenesis 15:1143–1150PubMedCrossRefGoogle Scholar
  12. Calvisi DF, Ladu S, Factor VM, Thorgeirsson SS (2004) Activation of β-catenin provides proliferative and invasive advantages in c-myc/TGFα hepatocarcinogenesis promoted by phenobarbital. Carcinogenesis 25:901–908PubMedCrossRefGoogle Scholar
  13. Chen DS (1993) From hepatitis to hepatoma: lessons from type B viral hepatitis. Science 262:369–370PubMedCrossRefGoogle Scholar
  14. Columbano A, Ledda-Columbano GM, Pibiri M, Cossu C, Menegazzi M, Moore DD, Huang W, Tian J, Locker J (2005) Gadd45β is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology 42:1118–1126PubMedCrossRefGoogle Scholar
  15. Cougot D, Neuveut C, Buendia MA (2005) HBV induced carcinogenesis. J Clin Virol 34(Suppl 1):S75–78PubMedCrossRefGoogle Scholar
  16. Davis LM, Caspary WJ, Sakallah SA, Maronpot R, Wiseman R, Barret JC, Elliot R, Houier JC (1994) Loss of heterozygosity in spontaneous and chemically induced tumors of the B6C3F1 mouse. Carcinogenesis 15:1637–1645PubMedCrossRefGoogle Scholar
  17. Devereux TR, Anna CH, Foley JF, White CM, Sills RC, Barrett JC (1999) Mutation of beta-catenin is an early event in chemically induced mouse hepatocellular carcinogenesis. Oncogene 18:4726–4733PubMedCrossRefGoogle Scholar
  18. Dietrich A, Faust D, Budt S, Moskwa M, Kunz A, Bock KW, Oesch F (2002) 2,3,7,8-tetrachlorodibenzo-p-dioxin-dependent release from contact inhibition in WB-F344 cells: involvement of cyclin A. Toxicol Appl Pharmacol 183:117–126PubMedCrossRefGoogle Scholar
  19. Diry M, Tomkiewicz C, Koehle C, Coumoul X, Bock KW, Barouki R, Transy C (2006) Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene 25:5570–5574PubMedCrossRefGoogle Scholar
  20. Druckrey H (1967) Quantitative aspects of chemical carcinogenesis. UICC Monogr 7:60–78Google Scholar
  21. Dunsford HA, Sell S, Chisari FV (1990) Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res 50:3400–3407PubMedGoogle Scholar
  22. Eriksson LC, Blank A, Bock KW, Mannervik B (1987) Metabolism of xenobiotics in hepatic nodules. Toxicol Pathol 15:27–42PubMedCrossRefGoogle Scholar
  23. Fletcher LM, Dixon JL, Purdie DM, Powell LW, Crawford DHG (2002) Excess alcohol greatly increases the prevalence of cirrhosis in hereditary hemochromatosis. Gastroenterology 122:281–289PubMedCrossRefGoogle Scholar
  24. Gold LS, Slone TH, Manley NB, Bernstein L (1991) Target organs in chronic bioassays of 533 chemical carcinogens. Environ Health Perspect 93:233–246PubMedCrossRefGoogle Scholar
  25. Gu YZ, Hogenesh JB, Bradfield CA (2000) The PAS superfamily. Sensors of environmental and developmental signals. Ann Rev Pharmacol Toxicol 40:519–561CrossRefGoogle Scholar
  26. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  27. Hasmall SC, Roberts RA (1999) The perturbation of apoptosis and mitosis by drugs and xenobiotics. Pharmacol Ther 82:63–70PubMedCrossRefGoogle Scholar
  28. Hillegass JM, Murphy KA, Villano CM, White LA (2006) The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease. Biol Chem 387:1159–1173PubMedCrossRefGoogle Scholar
  29. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) P53 mutations in human cancers. Science 253:49–53PubMedCrossRefGoogle Scholar
  30. Holzapple MP, Pitot HC, Cohen SH, Boobis AR, Klaunig JE, Pastoor T, Dellarco VL, Dragan YP (2005) Mode of action in relation of rodent liver tumors to human cancer risk. Toxicol Sci 89:51–56CrossRefGoogle Scholar
  31. Hosseinpour F, Moore R, Negishi M, Sueyoshi T (2006) Serine 202 regulates nuclear translocation of constitutive active/androstane receptor. Mol Pharmacol 69:1095–1102PubMedCrossRefGoogle Scholar
  32. Huang S, Chisari FV (1995) Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology 21:620–626PubMedGoogle Scholar
  33. IARC (1997) Polychlorinated dibenzo-para-dioxins. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 69. IARC, Lyon, pp 33–343Google Scholar
  34. IARC (1999) Hormonal contraception and post-menopausal hormone therapy. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 72. IARC, Lyon, pp 49–565Google Scholar
  35. IARC (2001) Phenobarbital and its sodium salt. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 79. IARC, Lyon, pp 161–288Google Scholar
  36. Jaworski M, Hailfinger S, Buchmann A, Hergenhahn M, Hollstein M, Ittrich C, Schwarz M (2005) Human p53 knock-in (hupki) mice do not differ in liver tumor response from their counterparts with murine p53. Carcinogenesis 26:1829–1834PubMedCrossRefGoogle Scholar
  37. Kekule AS, Lauer U, Weiss L, Luber B, Hofschneider PH (1993) Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway. Nature 361:742–745PubMedCrossRefGoogle Scholar
  38. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedCrossRefGoogle Scholar
  39. Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, Deluca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA (2003) PPARα agonist induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33:655–780PubMedCrossRefGoogle Scholar
  40. Knerr S, Schrenk D (2006) Carcinogenicity of ‘non-dioxinlike’ polychlorinated biphenyls. Crit Rev Toxicol 36:663–694PubMedCrossRefGoogle Scholar
  41. Kociba RJ, Keyes DG, Beyer JE, Carreon RM, Wade CE, Dittenber DA, Kalnins RP, Frauson LE, Park CN, Barnard SD, Hummel RA, Humiston CG (1978) Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Pharmacol 46:279–303PubMedCrossRefGoogle Scholar
  42. Lamminpää A, Pukkala E, Teppo L, Neuvonen PJ (2002) Cancer incidence among patients using antiepileptic drugs: a long-term follow-up of 28,000 patients. Eur J Clin Pharmacol 58:137–141PubMedCrossRefGoogle Scholar
  43. Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Bioulac-Sage P, Zucman-Rossi J (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120:1763–1773PubMedCrossRefGoogle Scholar
  44. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416PubMedCrossRefGoogle Scholar
  45. Levy L, Renard CA, Wie Y, Buendia MA (2002) Genetic alterations and oncogenic pathways in hepatocellular carcinoma. Ann N Y Acad Sci 963:21–36PubMedCrossRefGoogle Scholar
  46. Lieber CS (2001) Alcohol and hepatitis C. Alcohol Res Health 25:245–254PubMedGoogle Scholar
  47. Lieber CS (2002) S-Adenosyl-l-methionine and acoholic liver disease in animal models: implications for early intervention in human beings. Alcohol 27:173–177PubMedCrossRefGoogle Scholar
  48. Lieber CS (2004) Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 34:9–19PubMedCrossRefGoogle Scholar
  49. Luebeck EG, Buchmann A, Stinchcombe S, Moolgavkar SH, Schwarz M (2000) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on initiation and promotion of GST-P-positive foci in rat liver: a quantitative analysis of experimental data using a stochastic model. Toxicol Appl Pharmacol 167:63–73PubMedCrossRefGoogle Scholar
  50. Moennikes O, Buchmann A, Romualdi A, Ott T, Werringloer J, Willeke K, Schwarz M (2000) Lack of phenobarbital-mediated promotion of hepatocarcinogenesis in connexin32-null mice. Cancer Res 60:5087–5091PubMedGoogle Scholar
  51. Moennikes O, Loeppen S, Buchmann A, Andersson P, Ittrich C, Poellinger L, Schwarz M (2004) A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res 64:4707–4710PubMedCrossRefGoogle Scholar
  52. Moolgavkar SH, Luebeck EG, Buchmann A, Bock KW (1996) Quantitative analysis of enzyme-altered liver foci in rats initiated with diethylnitrosamine and promoted with 2,3,7,8-tetrachlorodibenzo-p-dioxin or 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 138:31–42PubMedCrossRefGoogle Scholar
  53. Müller O, Alonso A, Buchmann A, Bauer-Hofmann R, Bock KW, Schwarz M (1990) Detection of genomic alterations in carcinogen-induced mouse liver tumors by DNA fingerprint analysis. Mol Carcinog 3:330–334PubMedCrossRefGoogle Scholar
  54. Münzel P, Bock-Hennig B, Schieback S, Gschaidmeier H, Beck-Gschaidmeier S, Bock KW (1996) Growth modulation of hepatocytes and rat liver epithelial cells (WB-F344) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Carcinogenesis 17:197–202PubMedCrossRefGoogle Scholar
  55. Okey AB, Franc MA, Moffat ID, Tijet N, Boutros PC, Korkalainen M, Tuomisto M, Pohjanvirta R (2005) Toxicological implications of polymorphisms in receptors for xenobiotic chemicals: the case of the aryl hydrocarbon receptor. Toxicol Appl Pharmacol 207:S43–S51CrossRefGoogle Scholar
  56. Olsen JH, Schulgen G, Boice JD, Whysner J, Travis LB, Williams GM, Johnson FB, McGee JOD (1995) Antiepileptic treatment and risk for hepatobiliary cancer and malignant lymphoma. Cancer Res 55:294–297PubMedGoogle Scholar
  57. Park KT, Mitchell KA, Huang G, Elferink CJ (2005) The aryl hydrocarbon receptor predisposes hepatocytes to Fas-mediated apoptosis. Mol Pharmacol 67:612–622PubMedCrossRefGoogle Scholar
  58. Parzefall W, Erber E, Sedivy R, Schulte-Hermann R (1991) Testing for induction of DNA synthesis in human hepatocyte primary cultures by rat liver tumor promoters. Cancer Res 51:1143–1147PubMedGoogle Scholar
  59. Parzefall W, Berger W, Kainzbauer E, Teufelhofer O, Schulte-Hermann R, Thurman RG (2001) Peroxisome proliferators do not increase DNA synthesis in purified rat hepatocytes. Carcinogenesis 22:519–523PubMedCrossRefGoogle Scholar
  60. Pitot HC, Goldsworthy TL, Campbell HA, Poland A (1980) Quantitative evaluation of the promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin of hepatocarcinogenesis from diethylnitrosamine. Cancer Res 40:3616–3620PubMedGoogle Scholar
  61. Pitot HC (1990) Altered hepatic foci: their role in murine hepatocarcinogenesis. Annu Rev Pharmacol Toxicol 30:465–500PubMedCrossRefGoogle Scholar
  62. Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, Klaunig JE (2007) Role of Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol Sci 96:2–15PubMedCrossRefGoogle Scholar
  63. Roncalli M, Bianchi P, Bruni B, Laghi L, Destro A, Di Gioia S, Gennari L, Tommasini M, Malesci A, Coggi G (2002) Methylation framework of cell cycle gene inhibitors in cirrhosis and associated hepatocellular carcinoma. Hepatology 36:427–432PubMedCrossRefGoogle Scholar
  64. Schrenk D, Schäfer S, Bock KW (1994) 2,3,7,8-tetrachlorodibenzo-p-dioxin as growth modulator in mouse hepatocytes with high and low affinity Ah receptor. Carcinogenesis 17:197–202Google Scholar
  65. Schulte-Hermann R, Grasl-Kraupp B, Bursch W (1995) Apoptosis and hepatocarcinogenesis. In: Jirtle RL (ed) Liver regeneration and carcinogenesis. Academic Press, New York, pp 141–178CrossRefGoogle Scholar
  66. Schwarz M (1995) Tumor promotion in liver. Birkhäuser, BostonGoogle Scholar
  67. Schwarz M, Pearson D, Port R, Kunz W (1984) Promoting effect of 4-dimethylaminoazobenzene on enzyme altered foci induced in rat liver by N-nitrosodiethanolamine. Carcinogenesis 5:725–730PubMedCrossRefGoogle Scholar
  68. Schwienbacher C, Gramentieri L, Scelfo R, Veronese A, Calin GA, Bolondi L (2000) Gain of imprinting at the chromosome 11p15: a pathogenic mechanism identified in human hepatocarcinomas. Proc Natl Acad Sci USA 97:5445–5449PubMedCrossRefGoogle Scholar
  69. Solt D, Farber E (1976) New principle for the analysis of chemical carcinogenesis. Nature 263:701–703CrossRefGoogle Scholar
  70. Stahl S, Ittrich C, Marx-Stölting P, Köhle C, Altug-Teber Ö, Riess O, Bonin M, Jobst J, Kaiser S, Buchmann A, Schwarz M (2005) Genotype–phenotype relationships in hepatocellular tumors from mice and man. Hepatology 42:353–361PubMedCrossRefGoogle Scholar
  71. Stinchcombe S, Buchmann A, Bock KW, Schwarz M (1995) Inhibition of apoptosis during 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated tumour promotion in rat liver. Carcinogenesis 16:1271–1275PubMedCrossRefGoogle Scholar
  72. Strathmann J, Schwarz M, Tharappel JC, Glauert HP, Spear BT, Robertson LW, Appel KE, Buchmann A (2006) PCB 153, a non-dioxin-like tumor promoter, selects for beta-catenin (Catnb)-mutated mouse liver tumors. Toxicol Sci 93:34–40PubMedCrossRefGoogle Scholar
  73. Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31:339–346PubMedCrossRefGoogle Scholar
  74. Unger C, Buchmann A, Buenemann CL, Kress S, Schwarz M (1998) Wild-type function of the p53 tumor suppressor protein is not required for apoptosis of mouse hepatoma cells. Cell Death Differ 5:87–95PubMedCrossRefGoogle Scholar
  75. Watson MA, Devereux TR, Malarkey DE, Anderson MW, Maronpot RR (1995) H-ras oncogene mutation spectra in B6C3F1 and C57BL/6 mouse liver tumors provide evidence for TCDD promotion of spontaneous and vinyl carbamate-initiated liver cells. Carcinogenesis 16:1705–1710PubMedCrossRefGoogle Scholar
  76. Williams GM (1997) Chemicals with carcinogenic activity in rodent liver; mechanistic evaluation of human risk. Cancer Lett 117:175–188PubMedCrossRefGoogle Scholar
  77. Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, Cai T, Zhang X, Xiao HS, Qu J, Liu F, Huang QH, Cheng ZH, Li NG, Du JJ, Hu W, Shen KT, Lu G, Fu G, Zhong M, Xu SH, Gu WY, Huang W, Zhao XT, Hu GX, Gu JR, Chen Z, Han ZG (2001) Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA 98:15089–15094PubMedCrossRefGoogle Scholar
  78. Yager JD, Liehr JG (1996) Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 36:203–232PubMedCrossRefGoogle Scholar
  79. Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maronpot RR (2004) The orphan nuclear receptor constitutive active/androstane receptor is essential for liver tumor promotion by phenobarbital in mice. Cancer Res 64:7197–7200PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christoph Köhle
    • 1
  • Michael Schwarz
    • 1
  • Karl Walter Bock
    • 1
  1. 1.Department of Toxicology, Institute of Pharmacology and ToxicologyUniversity of TübingenTübingenGermany

Personalised recommendations