Advertisement

Archives of Toxicology

, Volume 80, Issue 8, pp 465–472 | Cite as

Cytotoxicity of dental composite (co)monomers and the amalgam component Hg2+ in human gingival fibroblasts

  • Franz-Xaver Reichl
  • Sabine Simon
  • Magalie Esters
  • Mario Seiss
  • Kai Kehe
  • Norbert Kleinsasser
  • Reinhard Hickel
Inorganic Compounds

Abstract

Unpolymerized resin (co)monomers or mercury (Hg) can be released from restorative dental materials (e.g. composites and amalgam). They can diffuse into the tooth pulp or the gingiva. They can also reach the gingiva and organs by the circulating blood after the uptake from swallowed saliva. The cytotoxicity of dental composite components hydroxyethylmethacrylate (HEMA), triethyleneglycoldimethacrylate (TEGDMA), urethanedimethacrylate (UDMA), and bisglycidylmethacrylate (Bis-GMA) as well as the amalgam component Hg2+ (as HgCl2) and methyl mercury chloride (MeHgCl) was investigated on human gingival fibroblasts (HGFs) at two time intervals. To test the cytotoxicity of substances, the bromodeoxyuridine (BrdU) assay and the lactate dehydrogenase (LDH) assay were used. The test substances were added in various concentrations and cells were incubated for 24 or 48 h. The EC50 values were obtained as half-maximum-effect concentrations from fitted curves. Following EC50 values were found [BrdU: mean (mmol/l); SEM in parentheses; n=12]: (24 h/48 h) HEMA 8.860 (0.440)/6.600(0.630), TEGDMA 1.810(0.130)/1.220(0.130), UDMA 0.120(0.010)/0.140(0.010), BisGMA 0.060(0.004)/0.040(0.002), HgCl2 0.015(0.001)/0.050(0.006), and MeHgCl 0.004(0.001)/0.005(0.001). Following EC50 values were found [LDH: mean (mmol/l); SEM in parentheses; n=12]: (24 h/48 h) HEMA 9.490(0.300)/7.890(1.230), TEGDMA 2.300(0.470)/1.950(0.310), UDMA 0.200(0.007)/0.100(0.007), BisGMA 0.070(0.005)/0.100(0.002), and MeHgCl 0.014(0.006)/0.010(0.003). In both assays, the following range of increased toxicity was found for composite components (24 and 48 h): HEMA < TEGDMA < UDMA < BisGMA. In both assays, MeHgCl was the most toxic substance. In the BrdU assay, Hg2+ was about fourfold less toxic than MeHgCl but Hg2+ was about fourfold more toxic than BisGMA. In the BrdU test, a significantly (P<0.05) decreased toxicity was observed for Hg2+ at 48 h, compared to the 24 h Hg2+-exposure. A time depending decreased toxicity was observed only for Hg2+ which can then reach the toxic level of BisGMA.

Keywords

Cytotoxicity Lactate dehydrogenase assay Bromodeoxyuridine assay Comonomers Amalgam Gingival cells 

Notes

Acknowledgements

The authors would like to acknowledge the technical assistance of Sabine Domes and Stefan Schulz.

References

  1. Arechabala B, Coiffard C, Rivalland P, Coiffard LJM, de Roeck-Holtzhauer Y (1999) Comparison of cytotoxicity of various surfactants tested on normal human fibroblast cultures using the neutral red test, MTT assay and LDH release. J Appl Toxicol 3:163–165CrossRefGoogle Scholar
  2. Aschner M, Conklin DR, Yao CP, Allen JW, Tan KH (1998) Induction of astrocyte metallothioneins (MTs) by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na+ uptake, and K+ release. Brain Res 2:254–261CrossRefGoogle Scholar
  3. Belletti S, Orlandini G, Vettori MV, Mutti A, Uggeri J, Scandroglio R, Alinovi R, Gatti R (2002) Time course assessment of methylmercury effects on C6 glioma cells: Submicromolar concentrations induce oxidative DNA damage and apoptosis. J Neurosci Res 5:703–711CrossRefGoogle Scholar
  4. Burtscher P (1993) Stability of radicals in cured composite-materials. Dent Mater 4:218–221CrossRefGoogle Scholar
  5. Camps J, Dejou J, Remusat M, About I (2000) Factors influencing pulpal response to cavity restorations. Dent Mater 6:432–440CrossRefGoogle Scholar
  6. Dillingham EO, Lawrence WH, Autian J, Schmalz G (1983) Acrylate and methacrylate esters—relationship of hemolytic-activity and in vivo toxicity. J Biomed Mater Res 6:945–957CrossRefGoogle Scholar
  7. Engelmann BE, Bindslev N, Poulsen SS, Hansen MB (2002) Effects of cyclooxygenase and lipoxygenase inhibition on basal- and serotonin-induced ion transport in rat colon. Compend Biochem Physiol 1:37–52Google Scholar
  8. Engelmann J, Janke V, Volk J, Leyhausen G, Von Neuhoff N, Schlegelberger B, Geurtsen W (2004) Effects of BisGMA on glutathione metabolism and apoptosis in human gingival fibroblasts in vitro. Biomaterials 19:4573–4580CrossRefGoogle Scholar
  9. Ferracane JL (1994) Elution of leachable components from composites. J Oral Rehabil 4:441–452CrossRefGoogle Scholar
  10. Forst HAT (1985) Probleme des multiplen Testens und Schätzens in der Arzneimittelforschung. Arzneimittel Forschung/Drug Res 3:7–10Google Scholar
  11. Gerzina TM, Hume WR (1994) Effect of dentin on release of tegdma from resin composite in-vitro. J Oral Rehabil 4:463–468CrossRefGoogle Scholar
  12. Gerzina TM, Hume WR (1996) Diffusion of monomers from bonding resin resin composite combinations through dentine in vitro. J Dent 1:125–128CrossRefGoogle Scholar
  13. Geurtsen W, Schoeler U (1997) A 4-year retrospective clinical study of class I and class II composite restorations. J Dent 3:229–232CrossRefGoogle Scholar
  14. Geurtsen W, Lehmann F, Spahl W, Leyhausen G (1998) Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 3:474–480CrossRefGoogle Scholar
  15. Halbach S (1994) Amalgamfüllungen: Belastung oder Vergiftung mit Quecksilber? Deutsches Ärzteblatt 502–506Google Scholar
  16. Halbach S, Reichl FX, Schiele R (1999) Stellungnahme zum Kieler Amalgam-Gutachten aus toxikologischer, arbeits- und umweltmedizinischer Sicht, in Amalgam im Spiegel kritischer Auseinandersetzung. Interdisziplinäre Stellungnahmen zum “Kieler Amalgam-Gutachten”, In: Halbach S (ed) Deutscher Ärzte-Verlag, Köln, pp 17–42Google Scholar
  17. Hamid A, Okamoto A, Iwaku M, Hume WR (1998) Component release from light-activated glass ionomer and compomer cements. J Oral Rehabil 2:94–99CrossRefGoogle Scholar
  18. Horstedt-Bindslev P, (2004) Amalgam toxicity—environmental and occupational hazards. J Dent 32:359–365CrossRefPubMedGoogle Scholar
  19. Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ (2004) Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 1:12–20CrossRefGoogle Scholar
  20. Kaga M, Noda M, Ferracane JL, Nakamura W, Oguchi H, Sano H (2001) The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells. Dent Mater 4:333–439CrossRefGoogle Scholar
  21. Kehe K, Reichl FX, Durner J, Walther U, Hickel R, Forth W (2001) Cytotoxicity of dental composite components and mercury compounds in pulmonary cells. Biomaterials 4:317–322CrossRefGoogle Scholar
  22. Kim SH, Sharma RP (2003) Cytotoxicity of inorganic mercury in murine T and B lymphoma cell lines: involvement of reactive oxygen species, Ca2+ homeostasis, and cytokine gene expression. Toxicol Vitro 4:385–395CrossRefGoogle Scholar
  23. Kleinsasser NH, Wallner BC, Harreus UA, Kleinjung T, Folwaczny M, Hickel R, Kehe K, Reichl FX (2004) Genotoxicity and cytotoxicity of dental materials in human lymphocytes as assessed by the single cell microgel electrophoresis (comet) assay. J Dent 3:229–234CrossRefGoogle Scholar
  24. Mahaffey KR, Clickner RP, Bodurow CC (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect 5:562–570Google Scholar
  25. Nakabayashi N, Takarada K (1992) Effect of HEMA on bonding to dentin. Dent Mater 2:125–130CrossRefGoogle Scholar
  26. Noda M, Wataha JC, Lockwood PE, Volkmann KR, Kaga M, Sano H (2003) Sublethal, 2-week exposures of dental material components alter TNF-alpha secretion of THP-1 monocytes. Dent Mater 19:101–105CrossRefPubMedGoogle Scholar
  27. Ott KHR, Loh F, Kröncke A, Schaller KH, Valentin H, Weltle D (1984) Zur Quecksilberbelastung durch Amalgamfüllungen. Deutsche Zahnärztliche Zeitschrift 199–205Google Scholar
  28. Paranjpe A, Bordador LC, Wang MY, Hume WR, Jewett A (2005) Resin monomer 2-hydroxyethyl methacrylate (HEMA) is a potent inducer of apoptotic cell death in human and mouse cells. J Dent Res 84:172–177PubMedGoogle Scholar
  29. Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 1:19–39CrossRefGoogle Scholar
  30. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB (1995) Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 74:1602–1606PubMedCrossRefGoogle Scholar
  31. Reichl FX (2002a) Zahnfüllungsmaterialien, in Taschenatlas der Toxikologie, In: Reichl FX (ed) Thieme Verlag, Stuttgart, pp 243–245Google Scholar
  32. Reichl FX, Durner J, Manhart J, Spahl W, Gempel K, Kehe K, Liebl B, Walther UI, Hume WR, Hickel R (2002b) Biological clearance of HEMA in guinea pigs. Biomaterials 10:2135–2141CrossRefGoogle Scholar
  33. Reichl FX, Walther UI, Durner J, Kehe K, Hickel R, Kunzelmann KH, Spahl W, Hume WR, Benschop H, Forth W (2001) Cytotoxicity of dental composite components and mercury compounds in lung cells. Dent Mater 2:95–101CrossRefGoogle Scholar
  34. Reichl FX, Esters M, Simon S, Seiss M, Kehe K, Kleinsasser N, Folwaczny M, Glas J, Hickel R (2005) Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts. Arch Toxicol (in press)Google Scholar
  35. Repetto G, Sanz P, Repetto M (1993) In-vitro effects of mercuric-chloride and methylmercury chloride on neuroblastoma-cells. Toxicol Vitro 4:353–357CrossRefGoogle Scholar
  36. Schmalz G, Garhammer P (2002) Biological interactions of dental cast alloys with oral tissues. Dent Mater 18:396–406CrossRefPubMedGoogle Scholar
  37. Seiss M, Kehe K, Haffner C, El-Mahdy K, Hickel R, Nitz S, Walther UI, Mahnart J, Reichl FX (2004) Analytic of (toxic) intermediates from metabolized dental restorative materials. Naunyn-Schmiedeberg’s Arch Pharmacol R107Google Scholar
  38. Spahl W, Budzikiewicz H, Geurtsen W (1998) Determination of leachable components from four commercial dental composites by gas and liquid chromatography mass spectrometry. J Dent 2:137–145CrossRefGoogle Scholar
  39. Stähle HJ (1997) Füllung und Versiegelung—Eine Risikoabschätzung bei Kunststoff-Materialien. Zahnärztl Mitt 4:364–374Google Scholar
  40. Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, Perianin A (2003) TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res 3:476–482CrossRefGoogle Scholar
  41. Szep S, Kunkel A, Ronge K, Heidemann D (2002) Cytotoxicity of modern dentin adhesives - In vitro testing on gingival fibroblasts. J Biomed Mater Res 1:53–60CrossRefGoogle Scholar
  42. Tanaka-Kagawa T, Suzuki M, Naganuma A, Yamanaka N, Imura N (1998) Strain difference in sensitivity of mice to renal toxicity of inorganic mercury. J Pharmacol Exp Ther 1:335–341Google Scholar
  43. Toimela TA, Tahti H (1995) Effects of mercury, methylmercury and aluminum on glial fibrillary acidic protein expression in rat cerebellar astrocyte cultures. Toxicol Vitro 3:317–322CrossRefGoogle Scholar
  44. Walther UI, Walther SC, Liebl B, Reichl FX, Kehe K, Nilius M, Hickel R (2002) Cytotoxicity of ingredients of various dental materials and related compounds in L2- and A549 cells. J Biomed Mater Res 63:643–649CrossRefPubMedGoogle Scholar
  45. Wan QC, Rumpf D, Schricker SR, Mariotti, Culbertson BM (2001) Influence of hyperbranched multi-methacrylates for dental neat resins on proliferation of human gingival fibroblasts. Biomacromolecules 1:217–222CrossRefGoogle Scholar
  46. Wang XQ, Gao XX (1997) Voltammetric behavior studies on the interaction between lanthanide ions and NAD(+), NAD–LDH complex. Cheml J Chin Univ-Chin 7:1027–1030Google Scholar
  47. Wataha JC, Lockwood PE, Bouillaguet S, Noda M (2003) In vitro biological response to core and flowable dental restorative materials. Dent Mater 19:25–31 CrossRefPubMedGoogle Scholar
  48. Wirth M, Fuchs A, Wolf M, Ertl B, Gabor F (1998) Lectin-mediated drug targeting: preparation, binding characteristics, and antiproliferative activity of wheat germ agglutinin conjugated doxorubicin on Caco-2 cells. Pharmacol Res 7:1031–1037Google Scholar
  49. Yoshii E (1997) Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. J Biomed Mater Res 4:517–524CrossRefGoogle Scholar
  50. Zalups RK, Aslamkhan AG, Ahmad S (2004) Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury. Kidney Int 1:251–261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Franz-Xaver Reichl
    • 1
  • Sabine Simon
    • 1
  • Magalie Esters
    • 1
  • Mario Seiss
    • 1
  • Kai Kehe
    • 2
  • Norbert Kleinsasser
    • 3
  • Reinhard Hickel
    • 4
  1. 1.Walther-Straub-Institute of Pharmacology and ToxicologyLudwig-Maximilians-University of MunichMunichGermany
  2. 2.Bundeswehr Institute of Pharmacology and ToxicologyMunichGermany
  3. 3.Department of Otolaryngology—Head and Neck SurgeryUniversity of RegensburgRegensburgGermany
  4. 4.Department of Operative Dentistry and PeriodontologyLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations