Archives of Toxicology

, 80:1 | Cite as

Zinc: a multipurpose trace element

  • M. Stefanidou
  • C. Maravelias
  • A. Dona
  • C. Spiliopoulou
Review Article


Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning.


Zinc Metallothioneins Zinc supply Ageing Antioxidants Zinc toxicity 


  1. Abo T (1993) Extrathymic pathway of T-cell differentiation: a primitive and fundamental immune system. Microbiol Immunol 37:247–250PubMedGoogle Scholar
  2. Aschner M (1996) The functional significance of brain. Metallothionein. FASEB J 10:1129–1136PubMedGoogle Scholar
  3. Barceloux DG (1999) Zinc. Clin Toxicol 37:279–292CrossRefGoogle Scholar
  4. Bertholf RL (1988) Zinc. In: Seiler HG, Sigel H (eds) Handbook on toxicity of inorganic compounds. Marcel Dekker Inc, New York, pp 788–800Google Scholar
  5. Beyersmann D (2002) Homeostasis and cellular functions of zinc. Mat Wiss U Werkstofftech 33:764–769CrossRefGoogle Scholar
  6. Bogden JD, Oleske JM, Lavenhar MA, Munves EM, Kemp FW, Bruening KS, Holding KJ, Denny TN, Guarino MA, Holland BK (1990) Effects of one year of supplemental ion with zinc and other micronutrients on cellular immunity in the elderly. J Am Coll Nutr 9:214–225PubMedGoogle Scholar
  7. Borghesi LA, Youn J, Olson EA, Lynes MA (1996) Interactions of metallothionein with murine lymphocytes: plasma membrane binding and proliferation. Toxicology 108:129–140CrossRefPubMedGoogle Scholar
  8. Bremner I, Beattie JH (1990) Metallothionein and trace minerals. Annu Rev Nutr 10:63–70CrossRefPubMedGoogle Scholar
  9. Brewer GJ (2000) Recognition, diagnosis and management of Wilson’s disease. Proc Soc Exp Biol Med 223:39–46CrossRefPubMedGoogle Scholar
  10. Brewer GJ, Yuzasiyan-Gurkan V, Lee D-Y, Appleman H (1989) Treatment of Wilson’s disease with zinc. VI. Initial treatment studies. J Lab Clin Med 114:633–638PubMedGoogle Scholar
  11. Brown MA, Thom JV, Orth GL, Cova P, Juarez J (1964) Food poisoning involving zinc contamination. Arch Environ Health 8:657–660PubMedGoogle Scholar
  12. Buhler RH, Kagi JH (1974) Human hepatic metallothioneins. FEBS Lett 39:229–234CrossRefPubMedGoogle Scholar
  13. Calesnick B, Dinan AM (1988) Zinc deficiency and zinc toxicity. Am Fam Physician 37:267–270PubMedGoogle Scholar
  14. Chiricolo M, Musa AR, Monti D, Zannotti M, Franceschi C (1993) Enhanced DNA repair in lymphocytes of Down’s syndrome patients: the influence of zinc nutritional supplementation. Mutat Res 295:105–111PubMedGoogle Scholar
  15. Cho CH, Fong LY, Ma PC, Ogle CW (1987) Zinc deficiency: its role in gastric secretion and stress-induced gastric ulceration in rats. Pharmacol Biochem Behav 26:293–297CrossRefPubMedGoogle Scholar
  16. Conte D, Narindrasorasak S, Sarkar B (1996) In vivo and in vitro iron-replaced zinc finger generates free radicals and causes DNA damage. J Biol Chem 271:5125–5130CrossRefPubMedGoogle Scholar
  17. Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and cerulloplasmin. Physiol Rev 65:238–309PubMedGoogle Scholar
  18. Cousins RJ (1998) A role for zinc in the regulation of gene expression. Proc Nutr Soc 57:307–311CrossRefPubMedGoogle Scholar
  19. Coyle P, Philcox JC, Rofe AM (1999) Metallothionein-null mice absorb less Zn from an egg-white diet, but a similar amount from solutions, although with altered intertissue Zn distribution. J Nutr 129:372–379PubMedGoogle Scholar
  20. Coyle P, Philcox JC, Rofe AM (2000) Zn-depleted mice absorb more of an intragastric Zn solution by a metallothionein-enhanced process than do Zn-replete mice. J Nutr 130:835–842PubMedGoogle Scholar
  21. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647CrossRefPubMedGoogle Scholar
  22. Dardenne M, Pleau JM, Nabama B et al (1982) Contribution of zinc and other metals to the biological activity of the serum thymic factor. Proc Natl Acad Sci USA 79:5370–5373PubMedCrossRefGoogle Scholar
  23. Darling DS, Gaur NK, Zhu BA (1998) Zinc finger homeodomain transcription factor binds specific thyroid hormone response elements. Mol Cell Endocrinol 139:25–35CrossRefPubMedGoogle Scholar
  24. Davis SR, McMahon RJ, Cousins RJ (1998) Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zinc-dependent zinc transporter-1 expression. J Nutr 128:825–831PubMedGoogle Scholar
  25. De Lisle RC, Sarras MP Jr, Hidalgo J, Andrews GK (1996) Metallothionein is a component of exocrine pancreas secretion: implications for zinc homeostasis. Am J Physiol 271:1103–1110Google Scholar
  26. Dreosti IE (1991) Free radical pathology and the genome. In: Dreosti IE (ed) Trace elements, micronutrients and free radicals. Humana Press, New Jersey, pp 149–169Google Scholar
  27. Dreosti IE (2001) Zinc and the gene. Mutat Res 475:161–167PubMedGoogle Scholar
  28. Ebadi M, Swanson S (1988) Zinc and metallothioneins in cancer. In: Ebadi M (ed) Nutrition, growth and cancer. Alan R Liss, New York, pp 161–175Google Scholar
  29. Evans P, Halliwell B (2001) Micronutrients: oxidant/antioxidant status. Br J Nutr 85(Suppl 2):S67–S74PubMedCrossRefGoogle Scholar
  30. Fabris N, Mocchegiani E, Albertini G (1993) Psycoendocrine-immune interactions in Down’s syndrome: role of zinc. In: Castells S, Wisnieski KE (eds) Growth hormone treatment in Down’s syndrome. Wiley, New York, pp 203–218Google Scholar
  31. Fabris N, Mocchegiani E, Provinciali M (1997) Plasticity of neuroendocrine–thymus interactions during aging. Exp Gerontol 32:415–429CrossRefPubMedGoogle Scholar
  32. Falchuk K (1998) The molecular basis for the role of zinc in developmental biology. Mol Cell Biochem 188:41–48CrossRefPubMedGoogle Scholar
  33. Fortes C, Forastiere F, Agabiti N, Fano V, Pacifici R, Virgili F, Piras G, Guidi L, Bartoloni C, Tricerri A, Zuccaro P, Ebrahim S, Perucci CA (1998) The effect of zinc and vitamin A supplementation on immune response in an older population. J Am Ger Soc 46:19–26Google Scholar
  34. Fraker PJ, King LE, Laakko T, Vollmer TL (2000) The dynamic link between the integrity of the immune system and zinc status. J Nutr 130(5S Suppl):1399S–1406SPubMedGoogle Scholar
  35. Goldstein AL (ed) (1984) Thymic hormones and lymphokines. Plenum Press, New YorkGoogle Scholar
  36. Hamer DH (1986) Metallothionein review. Annu Rev Biochem 55:913–951PubMedGoogle Scholar
  37. Hartwig A (1998) Carcinogenicity of metal compounds; possible role of DNA repair inhibition. Toxicol Lett 102/103:235–239CrossRefGoogle Scholar
  38. Henderson LM, Brewer GJ, Dressman JB, Swidan SZ, DuRoss DJ, Adair CH, Barnett JL, Berardi RR (1995) Effect of intragastric pH on the absorption of oral zinc acetate and zinc oxide in young healthy volunteers. J Parenter Enteral Nutr 19:393–397CrossRefGoogle Scholar
  39. Holt D, Magos L, Webb M (1980) The interaction of cadmium-induced rat renal metallothionein with bivalent mercury in vitro. Chem Biol Interact 32:125–135CrossRefPubMedGoogle Scholar
  40. Kadakia SC, Wong RK, Maydonovitch CL, Nelson NR, Henkin RI (1992) Serum and tissue zinc concentrations in patients with endoscopic esophagitis. Dig Dis Sci 37:513–516CrossRefPubMedGoogle Scholar
  41. Kagi JHR (1993) Evolution, structure and chemical activity of class I metallothioneins: an overview. In: Suzuki KT, Imura N, Kimura M (eds) Metallothioneins III. Birkhauser Verlag, Basel, pp 29–56Google Scholar
  42. Kagi JHR, Schaffer A (1988) Biochemistry of metallothioneins. Biochemistry 27:8509–8515CrossRefPubMedGoogle Scholar
  43. Keen CL, Gershwin ME (1990) Zinc deficiency and immune function. Annu Rev Nutr 10:415–431CrossRefPubMedGoogle Scholar
  44. Kelly EJ, Quaife CJ, Froelick GJ, Palmiter RD (1996) Metallothionein I and II protect against Zn deficiency and zinc toxicity in mice. J Nutr 126:1782–1790PubMedGoogle Scholar
  45. Klaassen CD, Choudhuri S, McKim JM Jr, Lehman-McKeeman LD, Kershaw WC (1994) In vitro and in vivo studies on the degradation of metallothionein. Environ Health Perspect 102(Suppl 3):141–146PubMedCrossRefGoogle Scholar
  46. Kondoh M, Imada N, Kamada K, Tsukahara R, Higashimoto M, Takiguchi M, Watanabe Y, Sato M (2003a) Property of metallothionein as a Zn pool differs depending on the induced condition of metallothionein. Toxicol Lett 142:11–18CrossRefPubMedGoogle Scholar
  47. Kondoh M, Kamada K, Kuronaga M, Higashimoto M, Takiguchi M, Watanabe Y, Sato M (2003b) Antioxidant property of metallothionein in fasted mice. Toxicol Lett 143:301–306CrossRefPubMedGoogle Scholar
  48. Kumar V, Cotran R, Robbins SL (2003) Cell injury, adaptation, and death. In: Robbins basic pathology, 7th edn. Saunders, An Imprint of Elsevier, PhiladelphiaGoogle Scholar
  49. Lesourd BM (1997) Nutrition and immunity in the elderly: modification of immune responses with nutritional treatments. Am J Clin Nutr 66:S478–S484Google Scholar
  50. Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, Feng P (1999) Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 40:200–207CrossRefPubMedGoogle Scholar
  51. Lynes MA, Garvey JS, Lawrence DA (1990) Extracellular metallothionein effects on lymphocyte activities. Mol Immunol 27:211–219CrossRefPubMedGoogle Scholar
  52. Maret W (2000) The function of zinc metallothionein: a link between cellular and redox state. J Nutr 130:S1455–S1458Google Scholar
  53. Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 133(5 Suppl 1):S1460–S1462Google Scholar
  54. Mocchegiani E, Fabris N (1995) Age-related thymus involution: zinc reverses in vitro the thymulin secretion effect. Int J Immunopharmacol 17:745–749CrossRefPubMedGoogle Scholar
  55. Mocchegiani E, Muzzioli M (2000a) Zinc, metallothioneins, immune responses, survival and ageing. Biogerontology 1:133–143CrossRefPubMedGoogle Scholar
  56. Mocchegiani E, Muzzioli M (2000b) Therapeutic application of zinc in human immunodeficiency virus against opportunistic infections. J Nutr 130(Suppl 5):S1424–S1431Google Scholar
  57. Mocchegiani E, Santarelli L, Muzzioli M, Fabris N (1995a) Reversibility of the thymic involution and of age-related peripheral immune dysfunctions by zinc supplementation in old mice. Int J Immunopharmacol 17:703–718CrossRefPubMedGoogle Scholar
  58. Mocchegiani E, Veccia S, Ancarani F, Scatise G, Fabris N (1995b) Benefit of oral zinc supplementation as an adjunct to zidovudine (AZT) therapy against opportunistic infections in AIDS. Int J Immunopharmacol 17:719–727CrossRefPubMedGoogle Scholar
  59. Mocchegiani E, Verbanac D, Santarelli L, Tibaldi A, Muzzioli M, Radosevic-Stasic B, Milin C (1997) Zinc and metallothioneins on cellular immune effectiveness during liver regeneration in young and old mice. Life Sci 61:1125–1145CrossRefPubMedGoogle Scholar
  60. Mocchegiani E, Santarelli L, Tibaldi A, Muzzioli M, Bulian D, Cipriano K, Olivieri F, Fabris N (1998) Presence of links between zinc and melatonin during the circadian cycle in old mice: effects on thymic endocrine activity and on the survival. J Neuroimmunol 86:111–122CrossRefPubMedGoogle Scholar
  61. Mocchegiani E, Ciavattini A, Santarelli L, Tibaldi A, Muzzioli M, Bonazzi P, Giacconi R, Fabris N, Garzetti GG (1999a) Role of zinc and alpha2 macroglobulin on thymic endocrine activity and on peripheral immune efficiency (natural killer activity and interleukin 2) in cervical carcinoma. Br J Cancer 79:244–250PubMedGoogle Scholar
  62. Mocchegiani E, Muzzioli M, Gaetti R, Veccia S, Viticchi C, Scalise G (1999b) Contribution of zinc to reduce CD4+ risk factor for ‘severe’ infection relapse in aging: parallelism with HIV. Int J Immunopharmacol 21:271–281CrossRefPubMedGoogle Scholar
  63. Mocchegiani E, Muzzioli M, Giacconi R (2000) Zinc and immunoresistance to infections in ageing: new biological tools. Trends Pharmacol Sci 21:205–208CrossRefPubMedGoogle Scholar
  64. Mocchegiani E, Giacconi R, Cipriano C, Muzzioli M, Fattoretti P, Bertoni-Freddari C, Isani G, Zambenedetti P, Zatta P (2001) Zinc-bound metallothioneins as potential biological markers of ageing. Brain Res Bull 55:147–153CrossRefPubMedGoogle Scholar
  65. Mocchegiani E, Giacconi R, Cipriano C, Gasparini N, Orlando F, Stecconi R, Muzzioli M, Isani G, Carpene E (2002) Metallothioneins (I+II) and thyroid-thymus axis efficiency in old mice: role of corticosterone and zinc supply. Mech Ageing Dev 123:675–694CrossRefPubMedGoogle Scholar
  66. Muzzioli M, Mocchegiani E, Bressani N, Bevilacqua P, Fabris N (1992) In vitro restoration by thymulin of the NK activity of cells from old mice. Int Immunopharmacol 14:57–61CrossRefGoogle Scholar
  67. Nath R, Kumar D, Li T, Singal KP (2000) Metallothioneins, oxidative stress and the cardiovascular system. Toxicology 155:17–26CrossRefPubMedGoogle Scholar
  68. Palecek E, Brazdova M, Cernocka H, Vlk D, Brazda V, Vojtesek B (1999) Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments. Oncogene 17/18(24):3617–3625CrossRefGoogle Scholar
  69. Philcox JC, Coyle P, Michalska A, Choo KH, Rofe AM (1995) Endotoxin-induced inflammation does not cause hepatic zinc accumulation in mice lacking metallothionein gene expression. Biochem J 308:543–546PubMedGoogle Scholar
  70. Philcox JC, Sturkenboom M, Coyle P, Rofe AM (2000) Metallothionein in mice reduces intestinal zinc loss during acute endotoxin inflammation, but not during starvation or dietary zinc restriction. J Nutr 130:1901–1909PubMedGoogle Scholar
  71. Rofe AM, Winters N, Hinskens B, Philcox JC, Coyle P (1999) The role of the pancreas in intestinal zinc secretion in metallothionein-null mice. Pancreas 19:69–75PubMedCrossRefGoogle Scholar
  72. Sandstead HH (1995) Is zinc deficiency a public health problem? Nutrition 11:87–92PubMedGoogle Scholar
  73. Sarkar B (1995) Metal replacement in DNA-binding zinc finger proteins and its relevance to mutagenicity and carcinogenicity through free radical generation. Nutrition 11:646–649PubMedGoogle Scholar
  74. Sato M (1992) Biological antioxidant defence system and metallotheionein. Jpn J Toxicol Environ Health 38:228–239Google Scholar
  75. Sawin S, Brodish P, Carter CS, Stanton ME, Lau C (1998) Development of cholinergic neurones in rat brain regions: dose-dependent effects of propylthiouracil-induced hypothyroidism. Neurotoxicol Teratol 20:627–635CrossRefPubMedGoogle Scholar
  76. SCF (2003) Opinion of the Scientific Committee on Food on the tolerable upper intake level of zinc. European CommissionGoogle Scholar
  77. Scortegagna M, Galdzicki Z, Rapoport SI, Hanbauer I (1998) In cortical cultures of trisomy 16 mouse brain the up-regulated metallothionem-I/II fails to respond to H2O2 exposure or glutamate receptor stimulation. Brain Res 787:292–298CrossRefPubMedGoogle Scholar
  78. Seve M, Chimienti F, Favier A (2002) Role of intracellular zinc in programmed cell death. Pathol Biol (Paris) 50:212–221Google Scholar
  79. Singh KP, Zaidi SI, Raisuddin S, Saxena AK, Murthy RC, Ray PK (1992) Effect of zinc on immune functions and host resistance against infection and tumor challenge. Immunopharmacol Immunotoxicol 14:813–840PubMedCrossRefGoogle Scholar
  80. Sobocinski PZ, Canterbury WJ Jr, Mapes CA, Dinterman RE (1978) Involvement of hepatic metallothioneins in hypozincaemia associated with bacterial infection. Am J Physiol 234:E399–E406PubMedGoogle Scholar
  81. Stefanidou M, Maravelias C (2005) Metallothioneins in toxicology. Curr Top Toxicol (in press)Google Scholar
  82. Sunderman FW Jr (1995) The influence of zinc on apoptosis. Ann Clin Lab Sci 25:134–142PubMedGoogle Scholar
  83. Takeyama Y, Ogino K, Segawa H, Kobayashi H, Uda T, Houbara T (1995) Effects of zinc on production of active oxygen species by rat neutrophils. Pharmacol Toxicol 76:50–55PubMedGoogle Scholar
  84. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411CrossRefPubMedGoogle Scholar
  85. Telford WG, Fraker PJ (1995) Preferential induction of apoptosis in mouse CD4+CD8+ alpha beta TCRloCD3 epsilon lo thymocytes by zinc. J Cell Physiol 164:259–270CrossRefPubMedGoogle Scholar
  86. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316CrossRefPubMedGoogle Scholar
  87. Tsukahara A, Seki S, Iiai T, Moroda T, Watanabe H, Suzuki S, Tada T, Hiraide H, Hatakeyama K, Abo T (1997) Mouse liver T cells: their change with ageing and in comparison with peripheral T-cells. Hepatology 26:301–309CrossRefPubMedGoogle Scholar
  88. US Recommended Daily Allowance USDA for Dietary Intakes of Minerals (1976) Federal Register 41:46172Google Scholar
  89. Vallee BL (1995) The function of metallothionein. Neurochem Int 27:23–33CrossRefPubMedGoogle Scholar
  90. Vallee BL, Auld DS (1990) Active-site zinc ligands and activated H2O of zinc enzymes. Proc Natl Acad Sci USA 87(1):220–224PubMedCrossRefGoogle Scholar
  91. Vallee BL, Falchuk KF (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118PubMedGoogle Scholar
  92. Vara H, Martinez B, Santos A, Colino A (2002) Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience 110:19–28CrossRefPubMedGoogle Scholar
  93. Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183CrossRefPubMedGoogle Scholar
  94. Verhaegh GW, Parat MO, Richard MJ, Hainaut P (1998) Modulation of p53 protein conformation and DNA-binding activity by intracellular chelation of zinc. Mol Carcinog 21:205–214CrossRefPubMedGoogle Scholar
  95. Weiss JH, Sensi SL, Koh JY (2000) Zinc(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401CrossRefPubMedGoogle Scholar
  96. Wellinghausen N, Rink L (1998) The significance of zinc for leukocyte biology. J Leukoc Biol 64:571–577PubMedGoogle Scholar
  97. Wellinghausen N, Kirchner H, Rink L (1997) The immunobiology of zinc. Immunol Today 18:519–521CrossRefPubMedGoogle Scholar
  98. Yadrick MK, Kenney MA, Winterfelt EA (1989) Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females. Am J Clin Nutr 49:145–150PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Stefanidou
    • 1
  • C. Maravelias
    • 1
  • A. Dona
    • 1
  • C. Spiliopoulou
    • 1
  1. 1.Department of Forensic Medicine and Toxicology, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations