Archives of Toxicology

, Volume 78, Issue 4, pp 207–211 | Cite as

Neurobehavioural test results and exposure to inorganic mercury: in search of dose-response relations

  • Monika Meyer-Baron
  • Michael Schaeper
  • Christoph van Thriel
  • Andreas Seeber
Inorganic Compounds


The aim of the analysis was, in general, to find a way to summarise results of studies in search of exposure-response relationships and, in particular, to ask whether an exposure-response relationship can be ascertained for neurobehavioural studies on occupational mercury exposure. Eighteen studies dealing with human mercury exposure and examining 1,106 exposed and 1,105 control subjects were included in the analysis. Effect sizes were calculated for each of the single neuropsychological test results on cognitive and motor performance and were considered in relation to mean current concentrations of exposure. The total of effect sizes demonstrated a correlation to exposure in the range of r=0.50. Additional analyses showed that the influence of mercury on psychological functions was different and that results on motor performance compared with memory and attention revealed the greatest impairment in mercury-exposed workers. Implications for the reversibility of impairments could be discussed because three of the studies examined subjects whose exposure had ceased. Besides the usefulness of the approach, it became obvious that the available 18 studies are a small sample, even when non-dimensional effect-sizes are used; hence, not all psychological domains covered by tests could be analysed.


Inorganic mercury Neurotoxicity Dose-response relationship Risk assessment Cognitive functions 


  1. Arcia E, Otto DA (1992) Reliability of selected tests from the Neurobehavioral Evaluation System. Neurotoxicol Teratol 14:103–110CrossRefPubMedGoogle Scholar
  2. Bergh J, Jonsson PE, Glimelius B, Nygren P (2001) A systematic overview of chemotherapy effects in breast cancer. Acta Oncologica 40:253–281CrossRefPubMedGoogle Scholar
  3. Camerino D, Cassitto M, Desideri E, Angotzi G (1981) Behavior of some psychological parameters in a population of a hg extraction plant. Clinical Toxicology 18:1299–1309PubMedGoogle Scholar
  4. Echeverria D, Heyer NJ, Martin MD, Naleway CA, Woods JS, Bittner AC Jr (1995) Behavioral effects of low-level exposure to elemental Hg among dentists. Neurotoxicol Teratol 17:161–168PubMedGoogle Scholar
  5. Ellingsen DG, Bast-Pettersen R, Efskind J, Thomassen Y (2001) Neuropsychological effects of low mercury vapor exposure in choralkali workers. NeuroToxicology 22:249–258CrossRefPubMedGoogle Scholar
  6. Fleishman EA (1954) Dimensional analysis of psychomotor abilities. J Exp Psychol 48Google Scholar
  7. Gonzalez-Ramirez K, Maiorino RM, Zuniga-Charles M, Xu Z, et al (1995) Sodium 2,3-dimercaptopropane-1-sulfonate challenge test for mercury in humans: II. Urinary mercury, porphyrins and neurobehavioral changes of dental workers in Monterrrey, Mexico. J Pharmacol Exp Ther 272:264–274PubMedGoogle Scholar
  8. Guenther W, Sietman B, Seeber A (1996) Repeated neurobehavioral investigations in workers exposed to mercury in a chloralkali plant. Neurotoxicology 17:605–614PubMedGoogle Scholar
  9. Haase J (1984) Die Sensomotorik. In: Haase J (ed) Arbeitsbuch Physiologie. Neurophysiologie. Urban & Schwarzenberg, München, pp 95–150Google Scholar
  10. Hedges L, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, OrlandoGoogle Scholar
  11. Jacobs DR, Marquart L, Slavin J, Kushi LH (1998) Whole-grain intake and cancer: an expanded review and meta-analysis. Nutr Cancer 30:85–96PubMedGoogle Scholar
  12. Kishi R, Doi R, Fukuchi Y, Satoh H, Ono A, Moriwaka F, Tashiro K, Takahata N, Sasatani H, Shirakashi H, Kamada T, Nakagawa D (1994) Residual neurobehavioural effects associated with chronic exposure to mercury vapor. Occup Environ Med 51:35–41PubMedGoogle Scholar
  13. Letz R, Gerr F, Cragle D, Green RC, Watkins J, Fidler AT (2000) Neurologic deficits 30 years after occupational exposure to elemental mercury. Neuro Toxicology 21:459–474Google Scholar
  14. Lezak M (1995) Neuropsychological assessment, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  15. Liang YX, Sun RK, Sun Y, Chen ZQ, Li LH (1993) Psychological effects of low exposure to mercury vapor: application of a computer-administered neurobehavioral evaluation system. Environ Res 60:320–327CrossRefPubMedGoogle Scholar
  16. Lucchini R, Cortesi I, Facco P, Benedetti L, Camerino D, Carta P, Urbano ML, Zaccheo A, Alessio L (2002) Effetti neurotossici da esposizione a basse dosi di mercurio. Med Lav 93:202–214PubMedGoogle Scholar
  17. Mathiesen T, Ellingsen DG, Kjuus H (1999) Neuropsychological effects associated with exposure to mercury vapor among former chloralkali workers. Scand J Work Environ Health 25:342–350PubMedGoogle Scholar
  18. Meyer-Baron M, Seeber A (2000a) A meta-analysis for neurobehavioural results due to occupational lead exposure with blood lead concentrations <70 mg/100 ml. Arch Toxicol 73:510–518PubMedGoogle Scholar
  19. Meyer-Baron M, Seeber A (2000b) A meta-analysis for neurobehavioural results due to occupational lead exposure with blood lead concentrations <70 mg/100 ml. Arch Toxicol 74:567–568Google Scholar
  20. Meyer-Baron M, Schaeper M, Seeber A (2002) A meta-analysis for neurobehavioural results due to occupational mercury exposure. Arch Toxicol 76:127–136CrossRefPubMedGoogle Scholar
  21. Ngim CH, Foo SC, Boey KW, Jeyaratnam J (1992) Chronic neurobehavioural effects of elemental mercury in dentists. British J of Industrial Medicine 49:782–790Google Scholar
  22. Piikivi L, Haenninen H (1989) Subjective symptoms and psychological performance of chlorine-alkali workers. Scand J Work Environ Health 15:69–74PubMedGoogle Scholar
  23. Piikivi L, Haenninen H, Martelin T, Mantere P (1984) Psychological performance and long-term exposure to mercury vapors. Scand J Work Environ Health 10:35–41PubMedGoogle Scholar
  24. Ritchie KA, Macdonald EB, Hammersley R, O’Neil JM, McGowan DA, Dale IM, Wesnes K (1995) A pilot study of the effect of low level exposure to mercury on the health of dental surgeons. Occup Environ Med 52:813–817PubMedGoogle Scholar
  25. Ritchie KA, Gilmour WH, Macdonald EB, Burke FJT, McGowan DA, Dale IM, Hammersley R, Hamilton RM, Binnie V, Collington D (2002) Health and neuropsychological functioning of dentists exposed to mercury. Occup Environ Med 59:287–293CrossRefPubMedGoogle Scholar
  26. Roels H, Gennart J-P, Lauwerys R, Buchet J-P, Malchaire J, Bernard A (1985) Surveillance of workers exposed to mercury vapour: validation of a previously proposed biological threshold limit value for mercury concentration in urine. Am J Ind Med 7:45–71PubMedGoogle Scholar
  27. Schiele R (1998) Quecksilber. In: Triebig G, Lehnert G (eds) Neurotoxikologie in der Arbeitsmedizin und Umweltmedizin. Gentner, StuttgartGoogle Scholar
  28. Uzzell BP (1988) Neuropsychological functioning after mercury exposure. Neuropsychology 2:19–27CrossRefGoogle Scholar
  29. Uzzell BP, Oler J (1986) Chronic low-level mercury exposure and neuropsychological functioning. J Clinical & Experimental Neuropsychology 8:581–593Google Scholar
  30. von Burg R, Greenwood MR (1991) Mercury. In: Merian E (ed) Metals and their compounds in the environment: occurrence, analysis, and biological relevance. VCH, WeinheimGoogle Scholar
  31. Williamson A, Teo R, Sanderson T (1982) Occupational mercury exposure and its consequences for behavior. Int Arch Occup Environ Health 50:273–286PubMedGoogle Scholar
  32. Wittling W (1983) Neuropsychologische Diagnostik. In: Groffmann KJ, Michel L (eds) Enzyklopädie der Psychologie. Psychologische Diagnostik. Bd. 4 Verhaltensdiagnostik. Verlag für Psychologie Hogrefe, Göttingen, pp 193–335Google Scholar
  33. Xin X, He J, Frontini MG, Motsamai LGOOI, Whelton PK (2001) Effects of alcohol reduction on blood pressure. A meta-analysis of randomizes controlled trials. Hypertension 38:1112–1117PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Monika Meyer-Baron
    • 1
  • Michael Schaeper
    • 1
  • Christoph van Thriel
    • 1
  • Andreas Seeber
    • 1
  1. 1.Institut für Arbeitsphysiologie an der Universität DortmundDortmundGermany

Personalised recommendations