Current approaches and trends in the production of microbial cellulases using residual lignocellulosic biomass: a bibliometric analysis of the last 10 years

  • Joyce Cristina Gonçalvez Roth
  • Michele Hoeltz
  • Lisianne Brittes BenitezEmail author


Considering the potential use of lignocellulosic biomass residues in microbial cultures to produce cellulases, the objective of this research was to investigate trends and discussions regarding scientific research conducted in this field through a bibliometric and scientometric analysis. Using the Elsevier Scopus database and VOSviewer software, scientific papers published between 2007 and 2018 were investigated. The results showed that the production of cellulases is related to obtaining xylanases and glucose. Obtaining of bioethanol and determining cellulolytic and xylanase activities were the relevant indicators for the use of these enzymes. China, India and Brazil are countries with a high number of publications in this field, most likely due to investments made between 2015 and 2017. This analysis showed that research on the use of lignocellulosic residues is focused on obtaining biofuels through enzymatic hydrolysis.


Bibliometry Biofuels Biomass Microbial cellulase 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. We would like to thank the Ministry of Science Technology Innovation and Comunication (MCTIC—01.0144.00/2010), the Science and Technology Regional Park (CEPPOB-TecnoUnisc) and Science, Technology and Economic Development Secretary (SDECT- RS).


  1. Ahmed IN, Yang X-L, Dubale AA, Li R-F, Ma Y-M, Wang L-M, Hou G-H, Guan R-F, Xie M-H (2018) Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresour Technol 270:377–382. CrossRefPubMedGoogle Scholar
  2. Akram F, Haq IU, Imran W, Mukhtar W (2018) Insight perspectives of thermostable endoglucanases for bioethanol production: a review. Renew Energy 122:225–238. CrossRefGoogle Scholar
  3. Archambault E, Campbell D, Gingras Y, Larivière V (2009) Comparing bibliometric statistics obtained from the Web of Science and Scopus. J Assoc Inf Sci Technol 60(7):1320–1326. CrossRefGoogle Scholar
  4. Asgher M, Asad MJ, Rahman SU, Legge RL (2007) A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng 79(3):950–955. CrossRefGoogle Scholar
  5. Bajpai P (2014a) Sources, production, and classification of xylanases. In: Bajpai P (ed) Xylanolytic enzymes. Academic Press, Amsterdam, pp 43–52CrossRefGoogle Scholar
  6. Bajpai P (2014b) Sources, production, and classification of xylanases. In: Bajpai P (ed) Xylanolytic enzymes. Academic Press, Amsterdam, pp 69–104CrossRefGoogle Scholar
  7. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282. CrossRefGoogle Scholar
  8. Banerjee A, Chakraborty T, Matsagar V (2018) Evaluation of possibilities in geothermal energy extraction from oceanic crust using offshore wind turbine monopiles. Renew Sustain Energy Rev 92:685–700. CrossRefGoogle Scholar
  9. Bastos VD (2012) Biorrefinarias, biocombustíveis e química renovável: revolução tecnológica e financiamento. Rev BNDES Rio de Janeiro 38:85–138Google Scholar
  10. Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int J Biological Macromol 86:656–669. CrossRefGoogle Scholar
  11. Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2018) Metabolic engineering and enzyme-mediated processing: A biotechnological venture towards biofuel production—a review. Renew Sustain Energy Rev 82:436–447. CrossRefGoogle Scholar
  12. Castro AM, Pereira N Jr (2010) Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Quím Nova 33(1):181–188. CrossRefGoogle Scholar
  13. Chang F, Xue S, Xie X, Fang W, Fang Z, Xiao Y (2018) Carbohydrate-binding module assisted purification and immobilization of β-glucosidase onto cellulose and application in hydrolysis of soybean isoflavone glycosides. J Biosci Bioeng 125(2):185–191. CrossRefPubMedGoogle Scholar
  14. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23. CrossRefPubMedGoogle Scholar
  15. Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76(3):291–302. CrossRefGoogle Scholar
  16. Cunha FM, Badino AC, Farinas CS (2017) Effect of a novel method for in-house cellulase production on 2G ethanol yields. Biocatal Agric Biotechnol 9:224–229. CrossRefGoogle Scholar
  17. Silva JA, Pires Bianchi MDL (2001) Cientometria: a métrica da ciência. Paidéia 11(21):5–10. CrossRefGoogle Scholar
  18. Dalenogare LS, Benitez GB, Ayala NF, Frank AG (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ 204:383–394. CrossRefGoogle Scholar
  19. De Figueiredo R, Soletti JI, da Silva SD, Silva JS, Silva K, Escodro PB, Silva DM, Farias KF, Balliano TL (2018) Mapeamento Prospectivo das Tecnologias envolvidas na produção de bioetanol. Cad Prospecção 11(1):127–136. CrossRefGoogle Scholar
  20. De Sousa Jabbour ABL, Jabbour CJC, Foropon C, Godinho Filho M (2018) When titans meet—can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol Forecast Soc Change 132:18–25. CrossRefGoogle Scholar
  21. Dhabhai R, Chaurasia SP, Dalai AK (2013) Effect of pretreatment conditions on strutural characteristics of wheat straw. Chem Eng Commun 200:1251–1259. CrossRefGoogle Scholar
  22. Dwidar M, Kim S, Jeon BS, Um Y, Mitchell RJ, Sang B (2013) Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose. Biotechnol Biofuels 6(1):6–35. CrossRefGoogle Scholar
  23. Eisentraut A (2010) Sustainable production of second-generation biofuels. Potential and perspectives in major economies and developing countries. Accessed 10 June 2018
  24. El-Haggar SM (2007) Sustainable industrial design and waste management. Academic, Oxford, pp 223–260CrossRefGoogle Scholar
  25. Elsevier (2017). Scopus: content coverage guide. Elsevier BV, Amsterdam. Accessed 02 July 2018
  26. Ergun SO, Urek RO (2017) Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrar Sci 15(2):273–277. CrossRefGoogle Scholar
  27. Falagas ME, Pitsouni E, Pappas G (2008) Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB J. 22(2):338–342. CrossRefPubMedGoogle Scholar
  28. Fang X, Shen Y, Zhao J, Bao X, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101(13):4814–4819. CrossRefPubMedGoogle Scholar
  29. Feng CY, Zou SL, Liu C, Zhang K, Hong JF (2016) Zhang MH (2016) Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added. World J Microbiol Biotechnol 32:86CrossRefGoogle Scholar
  30. Feres PFD (2010) Os biocombustíveis na matriz energética alemã: possibilidades de cooperação com o Brasil. Fundação Alexandre de Gusmão, BrasíliaGoogle Scholar
  31. Ferreira-Leitão V, Gottschalk LM, Ferrara MA, Nepomuceno AL, Molinari HB, Bom EPS (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valoriz 1(1):65–76. CrossRefGoogle Scholar
  32. Gomes DG, Serna-Loaiza S, Cardona CA, Gama M, Domingues L (2018) Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge. Bioresour Technol 267:347–355. CrossRefPubMedGoogle Scholar
  33. Gonçalves AR, Benar P, Costa SM, Ruzene DS, Moriya RY, Luz SM, Ferretti LP (2005) Integrated processes for use of pulps and lignins obtained from sugarcane bagasse and straw. Appl Biochem Biotechnol 123(1):821–826. CrossRefGoogle Scholar
  34. Gonçalves GA, Takasugi Y, Jia L, Mori Y, Noda S, Tanaka T, Ichinose H, Kamiya N (2015) Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzyme Microb Technol 72:16–24. CrossRefPubMedGoogle Scholar
  35. Guevara AJ, Silva OR, Hasegawa HL, Venanzi D (2017) Evaluation of sustainability of Brazilian ethanol production: a model in system dynamics. Braz Bus Rev 14(4):435–447CrossRefGoogle Scholar
  36. Halevi G, Moed H, Bar-Ilan J (2017) Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—review of the Literature. J Informetric 11(3):823–834. CrossRefGoogle Scholar
  37. Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: drivers, challenges, and opportunities. Renew Sustain Energy Rev 101:590–599. CrossRefGoogle Scholar
  38. Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30(6):1207–1218. CrossRefPubMedGoogle Scholar
  39. Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energy Rev 32:504–512. CrossRefGoogle Scholar
  40. Iqbal M, Azam M, Naeem M, Khwaja AS, Anpalagan A (2014) Optimization classification, algorithms and tools for renewable energy: a review. Renew Sustain Energy Rev 39:640–654. CrossRefGoogle Scholar
  41. Iranmahboob J, Nadim F, Monemi S (2002) Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22(5):401–404. CrossRefGoogle Scholar
  42. Irena (2014) Renewable energy prospects: China, REmap 2030 analysis. IRENA, Abu Dhabi. Accessed 10 June 2018
  43. Jain L, Agrawal D (2018) Performance evaluation of fungal cellulases with dilute acid pretreated sugarcane bagasse: a robust bioprospecting strategy for biofuel enzymes. Renew Energy 115:978–988. CrossRefGoogle Scholar
  44. Jouzani GS, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2(1):152–195CrossRefGoogle Scholar
  45. Jung YR, Park JM, Heo S, Hong W, Lee S, Oh B, Park S, Seo J, Kim C (2015) Cellulolytic enzymes produced by a newly isolated soil fungus Penicillium sp. TG2 with potential for use in cellulosic ethanol production. Renew Energy 76:66–71. CrossRefGoogle Scholar
  46. Jurutu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203. CrossRefGoogle Scholar
  47. Kirk TK, Farrell RL (1987) Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol 41(1):465–501. CrossRefPubMedGoogle Scholar
  48. Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, Kasumi T (2017) Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol 233:67–73. CrossRefPubMedGoogle Scholar
  49. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. CrossRefGoogle Scholar
  50. Ladeira SA, Cruz E, Delatorre AB, Barbosa JB, Martins MLL (2015) Cellulase production by thermophilic Bacillus sp SMIA-2 and its detergent compatibility. Electron J Biotechnol 18(2):110–115CrossRefGoogle Scholar
  51. Lopes S, Costa MT, Fernández-Llimós F, Amante MJ, Lopes PF (2012) A Bibliometria e a Avaliação da Produção Científica: indicadores e ferramentas. Actas do congresso Nacional de bibliotecários, arquivistas e documentalistas, n1. Accessed 15 Nov. 2018
  52. Lopes ML, Paulillo SCDL, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, Amorim Neto HB, Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47:64–76. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Machado CMM (2013) Microrganismos na produção de biocombustíveis líquidos. Embrapa Agroenergia, BrasíliaGoogle Scholar
  55. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114CrossRefGoogle Scholar
  56. McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. ACS Publications, Washington, pp 292–324CrossRefGoogle Scholar
  57. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93. CrossRefGoogle Scholar
  58. Moraïs S, Heyman A, Barak Y, Caspi J, Wilson DB, Lamed R, Shoseyov O, Bayer EA (2010) Enhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanase. J Biotechnol 147(3–4):205–211. CrossRefPubMedGoogle Scholar
  59. Motta FL, Andrade CCP, Santana MHA (2013) A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Chandel A, Silva SS (eds) Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization. Intech, Rijeka, pp 251–275Google Scholar
  60. Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41. CrossRefPubMedGoogle Scholar
  61. Nguyen Q, Bowyer J, Howe J, Bratkovich S, Groot H, Pepke E, Fernholz K (2017) Global production of second generation biofuels: trends and influences. Dovetail Partners Inc, Minneapolis, pp 1–16Google Scholar
  62. Nyko D, Garcia JLF, Milanez AY, Dunham FB (2010) A corrida tecnológica pelos biocombustíveis de segunda geração: uma perspectiva comparada. BNDES Setorial, Rio de Janeiro, pp 5–48Google Scholar
  63. Patra SK, Bhattacharya P, Verma N (2006) Bibliometric study of literature on bibliometrics. DESIDOC J Libr Inf Technol 26(1):27–32Google Scholar
  64. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33(6):1091–1107. CrossRefPubMedGoogle Scholar
  65. Pelizer LH, Pontieri MH, Moraes IO (2007) Utilização de resíduos agro-industriais em processos biotecnológicos como perspectiva de redução do impacto ambiental. J Technol Manag Innov 2(1):118–127Google Scholar
  66. Petzold-Welcke K, Daus S, Heinze T (2014) Xylan derivatives and their application potential—mini-review of own results. Carbohydr Polym 100:80–88. CrossRefPubMedGoogle Scholar
  67. Polizeli M, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591. CrossRefPubMedGoogle Scholar
  68. Rainer J, Turhollow AF, Rutz D, Mergner R (2013) Production facilities for second-generation biofuels in the USA and the EU—current status and future perspectives. Biofuels Bioprod Biorefin 7(6):647–665. CrossRefGoogle Scholar
  69. Rajak R, Banerjee R (2016) Enzyme mediated biomass pretreatment and hydrolysis: a biotechnological venture towards bioethanol production. RSC Adv 6(66):61301–61311. CrossRefGoogle Scholar
  70. Ramos JL, Valdivia M, García-Lorente F, Segura A (2016) Benefits and perspectives on the use of biofuels. Microb Biotechnol 9(4):436–440. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Reese ET (1956) Enzymatic hydrolysis of cellulose. Appl Microbiol 4(1):39–45CrossRefGoogle Scholar
  72. Reetz MT (2010) Enzyme engineering by directed evolution. In: Baltz RH, Demain AL, Davies JE, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (eds) Manual of industrial microbiology and biotechnology, 3rd edn. American Society for Microbiology Press, Washington, pp 466–479Google Scholar
  73. Rodrigues C, Woiciechowski AL, Letti LA Jr, Karp SG, Goelzer FD, Sobral KCA, Coral JD, Campioni TS, Maceno MAC, Soccol CR (2017) Materiais lignocelulósicos como matéria prima para a obtenção de biomoléculas de valor comercial. In: Resende RR (ed) Biotecnologia Aplicada a Agro&indústria, vol 4. Blucher, São Paulo, pp 283–314CrossRefGoogle Scholar
  74. Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2(2):164–177. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3(3):235–258CrossRefGoogle Scholar
  76. Santos RNMD, Kobashi NY (2009) Bibliometria, cientometria, infometria: conceitos e aplicações. Pesq Bras Ci Inf 2(1):155–172Google Scholar
  77. Screena CP, Sebastian D (2018) Augmented cellulase production by Bacillus subtilis strain MU S1 using different statistical experimental designs. J Genet Eng Biotechnol 16(1):9–16. CrossRefGoogle Scholar
  78. Shajahan S, Moorthy G, Sivakumar N, Selvakumar G (2017) Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra. India. J King Saud Univ Sci 29(3):302–310. CrossRefGoogle Scholar
  79. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228. CrossRefPubMedGoogle Scholar
  80. Sharma S, Yazdani SS (2016) Diversity of microbial cellulase system. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering Microbial cellulase system properties and applications. Elsevier, Amsterdam, pp 49–64Google Scholar
  81. Singhania RR, Adsul M, Pandey A, Patel AK (2017) Cellulases. In: Pandey A, Negi S, Socco C (eds) Current developments in biotechnology and bioengineering Production, isolation and purification of industrial products. Elsevier, Amsterdam, pp 73–101Google Scholar
  82. Song C, Qiu Y, Liu Q, Ji N, Zhao Y, Kitamura Y, Hou X (2018) Process intensification of cellulosic ethanol production by waste heat integration. Chem Eng Res Des 132:115–122. CrossRefGoogle Scholar
  83. Song M, Wang S (2016) Can employment structure promote environment-biased technical progress? Technol Forecast Soc Change 112:285–292. CrossRefGoogle Scholar
  84. Souza MR (2012) Microbial degradation of lignocellulosic biomass. In: Chandel A, Silva SS (eds) Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization. Intech, Rijeka, pp 207–247Google Scholar
  85. Souza De (2013) Microbial degradation of lignocellulosic biomass. In: Chandel AK, Silva SS (eds) Sustainable degradation of lignocellulosic biomass—techniques, applications and commercialization. InTech, Rijeka, pp 207–247Google Scholar
  86. Sóti V, Lenaerts S, Cornet I (2018) Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes. J Biotechnol 270:70–76. CrossRefPubMedGoogle Scholar
  87. Sousa ED, Macedo IDC (2010) Etanol e bioeletricidade: a cana-de-açúcar no futuro da matriz energética. Luc Projetos de Comunicação, São PauloGoogle Scholar
  88. Srivastava N, Srivastava M, Mishra PK, Gupta K, Molina G, Rodriguez-Couto S, Manikanta A, Ramteke PW (2018) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sustain Energy Rev 82:2379–2386. CrossRefGoogle Scholar
  89. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. CrossRefPubMedGoogle Scholar
  90. Thomas L, Parameswaran B, Pandey A (2016) Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. Renew Energy 98:9–15. CrossRefGoogle Scholar
  91. Thomas L, Ram H, Singh VP (2018) Inducible cellulase production from an organic solvent tolerant Bacillus sp SV1 and evolutionary divergence of endoglucanase in different species of the genus Bacillus. Braz J Microbiol 49(2):429–442. CrossRefPubMedGoogle Scholar
  92. Toivanen H, Novotny M (2017) The emergence of patent races in lignocellulosic biofuels, 2002–2015. Renew Sustain Energy Rev 77:318–326. CrossRefGoogle Scholar
  93. UNEP (2018) UN Environment's Economy Division. Global Trands in Renewable Energy InvestimentGoogle Scholar
  94. Valencia EY, Chambergo FS (2013) Mini-review: Brazilian fungi diversity for biomass degradation. Fungal Genet Biol 60:9–18. CrossRefPubMedGoogle Scholar
  95. Viviescas C, Lima L, Diuana FA, Vasquez E, Ludovique C, Silva GN, Huback V, Magalar L, Szklo A, Lucena FP, Schaeffer R, Paredes JR (2019) Contribution of variable renewable energy to increase energy security in Latin America: complementarity and climate change impacts on wind and solar resources. Renew Sustain Energy Rev 113:109232. CrossRefGoogle Scholar
  96. Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: Feedstock and current technologies. J Environ Chem Eng 2:573–584. CrossRefGoogle Scholar
  97. Wang Z, Cao G, Zheng J, Fu D, Song J, Zhang J, Zhao L, Yang Q (2015) Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess. Biotechnol Biofuels 8(1):1–9. CrossRefGoogle Scholar
  98. White W, Mandels G, Siu R (1950) Fungi in relation to the degradation of woolen fabrics. Mycol 42(2):199–223. CrossRefGoogle Scholar
  99. Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ (2006) High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Bioresour Technol 97(15):1794–1800. CrossRefPubMedGoogle Scholar
  100. Ye Y, Li X, Cao Y, Du J, Chen S, Zhao J (2017) A β-xylosidase hyper-production Penicillium oxalicum mutant enhanced ethanol production from alkali-pretreated corn stover. Bioresour Technol 245:734–742. CrossRefPubMedGoogle Scholar
  101. Yu H, Li X (2015) Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass Bioenery 81:19–25. CrossRefGoogle Scholar
  102. Yuan B, Yang XQ, Xue LW, Feng YN, Jiang JH (2016) A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: synergistic recovery of anthocyanin from fruit and vegetable waste. Bioresour Technol 222:14–23. CrossRefPubMedGoogle Scholar
  103. Zhang PHY, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481. CrossRefGoogle Scholar
  104. Zhang X, Li Y, Zhao X, Bai F (2017) Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresour Technol 223:317–322. CrossRefPubMedGoogle Scholar
  105. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Universidade de Santa Cruz do Sul.Santa Cruz do SulBrazil

Personalised recommendations