Advertisement

The clpX gene plays an important role in bacterial attachment, stress tolerance, and virulence in Xanthomonas campestris pv. campestris

  • Hsueh-Hsia Lo
  • Chao-Tsai Liao
  • Chih-En Li
  • Ying-Chuan Chiang
  • Yi-Min HsiaoEmail author
Original Paper

Abstract

Xanthomonas campestris pv. campestris is a bacterial pathogen and the causal agent of black rot in crucifers. In this study, a clpX mutant was obtained by EZ-Tn5 transposon mutagenesis of the X. campestris pv. campestris. The clpX gene was annotated to encode ClpX, the ATP-binding subunit of ATP-dependent Clp protease. The clpX mutant exhibited reduced bacterial attachment, extracellular enzyme production and virulence. Mutation of clpX also resulted in increased sensitivity to a myriad of stresses, including heat, puromycin, and sodium dodecyl sulfate. These altered phenotypes of the clpX mutant could be restored to wild-type levels by in trans expression of the intact clpX gene. Proteomic analysis revealed that the expression of 211 proteins differed not less than twofold between the wild-type and mutant strains. Cluster of orthologous group analysis revealed that these proteins are mainly involved in metabolism, cell wall biogenesis, chaperone, and signal transduction. The reverse transcription quantitative real-time polymerase chain reaction analysis demonstrated that the expression of genes encoding attachment-related proteins, extracellular enzymes, and virulence-associated proteins was reduced after clpX mutation. The results in this study contribute to the functional understanding of the role of clpX in Xanthomonas for the first time, and extend new insights into the function of clpX in bacteria.

Keywords

Biofilm formation Environmental adaptation Pathogenicity 

Notes

Acknowledgements

This work was supported by Ministry of Science and Technology of Taiwan (Grants Nos. MOST104-2313-B-166-001-MY3 and MOST107-2313-B-166-001-MY3) to YMH, and Central Taiwan University of Science and Technology (grant No. CTU105-P-15) to HHL.

Supplementary material

203_2019_1772_MOESM1_ESM.xlsx (76 kb)
Supplementary file1 (XLSX 75 kb)

References

  1. Bogdanove AJ et al (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193:5450–5464.  https://doi.org/10.1128/JB.05262-11 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Buttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133.  https://doi.org/10.1111/j.1574-6976.2009.00192.x CrossRefPubMedGoogle Scholar
  3. Chan JW, Goodwin PH (1999) The molecular genetics of virulence of Xanthomonas campestris. Biotechnol Adv 17:489–508CrossRefGoogle Scholar
  4. Chen YY, Wu CH, Lin JW, Weng SF, Tseng YH (2010) Mutation of the gene encoding a major outer-membrane protein in Xanthomonas campestris pv. campestris causes pleiotropic effects, including loss of pathogenicity. Microbiology 156:2842–2854.  https://doi.org/10.1099/mic.0.039420-0 CrossRefPubMedGoogle Scholar
  5. Chiang YC, Liao CT, Du SC, Hsiao YM (2017) Functional characterization and transcriptional analysis of icd2 gene encoding an isocitrate dehydrogenase of Xanthomonas campestris pv. campestris. Arch Microbiol 199:917–929.  https://doi.org/10.1007/s00203-017-1370-5 CrossRefPubMedGoogle Scholar
  6. Claunch KM, Bush M, Evans CR, Malmquist JA, Hale MC, McGillivray SM (2018) Transcriptional profiling of the clpX mutant in Bacillus anthracis reveals regulatory connection with the lrgAB operon. Microbiology 164:659–669.  https://doi.org/10.1099/mic.0.000628 CrossRefPubMedGoogle Scholar
  7. da Silva AC et al (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463CrossRefGoogle Scholar
  8. Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000CrossRefGoogle Scholar
  9. Erbse A et al (2006) ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439:753–756.  https://doi.org/10.1038/nature04412 CrossRefPubMedGoogle Scholar
  10. Frees D, Qazi SN, Hill PJ, Ingmer H (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48:1565–1578CrossRefGoogle Scholar
  11. Fu JF, Tseng YH (1990) Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl Environ Microbiol 56:919–923PubMedPubMedCentralGoogle Scholar
  12. Gottesman S (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587.  https://doi.org/10.1146/annurev.cellbio.19.110701.153228 CrossRefPubMedGoogle Scholar
  13. He YW, Zhang LH (2008) Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32:842–857.  https://doi.org/10.1111/j.1574-6976.2008.00120.x CrossRefPubMedGoogle Scholar
  14. He YW, Boon C, Zhou L, Zhang LH (2009) Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR. Mol Microbiol 71:1464–1476.  https://doi.org/10.1111/j.1365-2958.2009.06617.x CrossRefPubMedGoogle Scholar
  15. Hsiao YM, Liao HY, Lee MC, Yang TC, Tseng YH (2005) Clp upregulates transcription of engA gene encoding a virulence factor in Xanthomonas campestris by direct binding to the upstream tandem Clp sites. FEBS Lett 579:3525–3533CrossRefGoogle Scholar
  16. Hsiao YM, Liu YF, Fang MC, Song WL (2011) XCC2731, a GGDEF domain protein in Xanthomonas campestris, is involved in bacterial attachment and is positively regulated by Clp. Microbiol Res 166:548–565.  https://doi.org/10.1016/j.micres.2010.11.003 CrossRefPubMedGoogle Scholar
  17. Hsiao YM, Song WL, Liao CT, Lin IH, Pan MY, Lin CF (2012) Transcriptional analysis and functional characterization of XCC1294 gene encoding a GGDEF domain protein in Xanthomonas campestris pv. campestris. Arch Microbiol 194:293–304.  https://doi.org/10.1007/s00203-011-0760-3 CrossRefPubMedGoogle Scholar
  18. Jana B, Tao L, Biswas I (2016) Strain-dependent recognition of a unique degradation motif by ClpXP in Streptococcus mutans. mSphere.  https://doi.org/10.1128/mSphere.00287-16 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kajfasz JK et al (2009) Role of Clp proteins in expression of virulence properties of Streptococcus mutans. J Bacteriol 191:2060–2068.  https://doi.org/10.1128/JB.01609-08 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197CrossRefGoogle Scholar
  21. Kress W, Maglica Z, Weber-Ban E (2009) Clp chaperone-proteases: structure and function. Res Microbiol 160:618–628.  https://doi.org/10.1016/j.resmic.2009.08.006 CrossRefPubMedGoogle Scholar
  22. Lee BM et al (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577–586.  https://doi.org/10.1093/nar/gki206 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li Y et al (2010) ClpXP protease regulates the type III secretion system of Dickeya dadantii 3937 and is essential for the bacterial virulence. Mol Plant Microbe Interact 23:871–878.  https://doi.org/10.1094/MPMI-23-7-0871 CrossRefPubMedGoogle Scholar
  24. Liao CT, Du SC, Lo HH, Hsiao YM (2014) The galU gene of Xanthomonas campestris pv. campestris is involved in bacterial attachment, cell motility, polysaccharide synthesis, virulence, and tolerance to various stresses. Arch Microbiol 196:729–738.  https://doi.org/10.1007/s00203-014-1012-0 CrossRefPubMedGoogle Scholar
  25. Liao CT et al (2016) Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris. Res Microbiol 167:299–312.  https://doi.org/10.1016/j.resmic.2016.01.002 CrossRefPubMedGoogle Scholar
  26. Liao CT, Chiang YC, Hsiao YM (2019) Functional characterization and proteomic analysis of lolA in Xanthomonas campestris pv. campestris. BMC Microbiol 19:20.  https://doi.org/10.1186/s12866-019-1387-9 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu YC et al (2015) Complete genome sequence of Xanthomonas campestris pv. campestris strain 17 from Taiwan. Genome Announc.  https://doi.org/10.1128/genomeA.01466-15 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liu YF, Liao CT, Chiang YC, Li CE, Hsiao YM (2018) WxcX is involved in bacterial attachment and virulence in Xanthomonas campestris pv. campestris. J Basic Microbiol 58:403–413.  https://doi.org/10.1002/jobm.201700591 CrossRefPubMedGoogle Scholar
  29. Malik IT, Brotz-Oesterhelt H (2017) Conformational control of the bacterial Clp protease by natural product antibiotics. Nat Prod Rep 34:815–831.  https://doi.org/10.1039/c6np00125d CrossRefPubMedGoogle Scholar
  30. McGillivray SM et al (2009) ClpX contributes to innate defense peptide resistance and virulence phenotypes of Bacillus anthracis. J Innate Immun 1:494–506.  https://doi.org/10.1159/000225955 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Porankiewicz J, Wang J, Clarke AK (1999) New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32:449–458CrossRefGoogle Scholar
  32. Qian W et al (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 15:757–767CrossRefGoogle Scholar
  33. Qian W, Han ZJ, Tao J, He C (2008) Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. Mol Plant Microbe Interact 21:1128–1138.  https://doi.org/10.1094/MPMI-21-8-1128 CrossRefPubMedGoogle Scholar
  34. Richard D et al (2017) Complete genome sequences of six copper-resistant Xanthomonas strains causing bacterial spot of solaneous plants, belonging to X. gardneri, X. euvesicatoria, and X. vesicatoria, using long-read technology. Genome Announc.  https://doi.org/10.1128/genomeA.01693-16 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ryan RP et al (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442.  https://doi.org/10.1111/j.1365-2958.2006.05531.x CrossRefPubMedGoogle Scholar
  36. Ryan RP et al (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9:344–355.  https://doi.org/10.1038/nrmicro2558 CrossRefPubMedGoogle Scholar
  37. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring HarborGoogle Scholar
  38. Schmidt R, Bukau B, Mogk A (2009) Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Res Microbiol 160:629–636.  https://doi.org/10.1016/j.resmic.2009.08.018 CrossRefPubMedGoogle Scholar
  39. Tao J, Li C, Luo C, He C (2014) RavA/RavR two-component system regulates Xanthomonas campestris pathogenesis and c-di-GMP turnover. FEMS Microbiol Lett 358:81–90.  https://doi.org/10.1111/1574-6968.12529 CrossRefPubMedGoogle Scholar
  40. Thieme F et al (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 187:7254–7266CrossRefGoogle Scholar
  41. Veselova MA et al (2016) The effect of mutation in the clpX gene on the synthesis of N-acyl-homoserine lactones and other properties of Burkholderia cenocepacia 370. Microbiol Res 186–187:90–98.  https://doi.org/10.1016/j.micres.2016.03.009 CrossRefPubMedGoogle Scholar
  42. Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18.  https://doi.org/10.1111/j.1364-3703.2012.00833.x CrossRefPubMedGoogle Scholar
  43. Wang JC, So BH, Kim JH, Park YJ, Lee BM, Kang HW (2008) Genome-wide identification of pathogenicity genes in Xanthomonas oryzae pv. oryzae by transposon mutagenesis. Plant Pathol 57:1136–1145.  https://doi.org/10.1111/j.1365-3059.2008.01884.x CrossRefGoogle Scholar
  44. Yang BY, Tseng YH (1988) Production of exopolysaccharide and levels of protease and pectinase activity in pathogenic and non-pathogenic strains of Xanthomonas campestris pv. campestris. Bot Bull Acad Sin 29:93–99Google Scholar
  45. Yang F et al (2012) A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 25:1361–1369.  https://doi.org/10.1094/MPMI-01-12-0014-R CrossRefPubMedGoogle Scholar
  46. Zang N et al (2007) Requirement of a mip-like gene for virulence in the phytopathogenic bacterium Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 20:21–30.  https://doi.org/10.1094/MPMI-20-0021 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Laboratory Science and BiotechnologyCentral Taiwan University of Science and TechnologyTaichungTaiwan

Personalised recommendations