Phylogenetic characteristics, virulence properties and antibiogram profile of motile Aeromonas spp. isolated from ornamental guppy (Poecilia reticulata)

  • Sabrina Hossain
  • B. C. J. De Silva
  • P. S. Dahanayake
  • Mahanama De Zoysa
  • Gang-Joon HeoEmail author
Original Paper


Aeromonas spp. are opportunistic pathogenic bacteria related to an assembly of infectious diseases in ornamental fish. In the present study, virulence properties and antibiotic susceptibility of 52 guppy-borne Aeromonas spp. were investigated. The isolates were identified as A. veronii (n = 34), A. dhakensis (n = 10), A. hydrophila (n = 3), A. caviae (n = 3) and A. enteropelogenes (n = 2) by gyrB gene sequencing. The gyrB sequence deviation within and among the species ranged from 0 to 2.6% and 2.7–9.2%. Each species formed a distinct group in the unrooted neighbor-joining phylogenetic tree. The phenotypic virulence factors such as β-hemolysis, slime, caseinase, DNase, gelatinase and lipase production were observed in 28 (53.9%), 33 (63.5%), 28 (53.9%), 42 (80.8%), 37 (71.2%) and 42 (80.8%) isolates, respectively. The virulence genes were detected by PCR assay in the following proportions- act (84.6%), hly (80.8%), aer (73.1%), lip (73.1%), gcaT (73.1%), ascV (53.8%), ahyB (53.8%) fla (51.9%), alt (48.1%), ast (36.5%) and ser (34.6%), respectively. The amoxicillin, ampicillin, imipenem, nalidixic acid, oxytetracycline and rifampicin were resistant to more than 70.0% of the isolates in antibiotic susceptibility test. Our study suggests that the ornamental guppy can be a potential reservoir of virulent and multi-drug resistant Aeromonas spp.


Aeromonas spp. Phylogenetic tree Virulence markers Antibiotic susceptibility Guppy 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The American Veterinary Medical Association (AVMA) guidelines were followed to euthanize the fish.


  1. Abd-El-Malek AM (2017) Incidence and virulence characteristics of Aeromonas spp. in fish. Vet World 10:34–37PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arslan S, Kucuksari R (2015) Phenotypic and genotypic virulence factors and antimicrobial resistance of motile Aeromonas spp. from fish and ground beef. J Food Saf 35:551–559CrossRefGoogle Scholar
  3. Burke V, Gracey M, Robinson J et al (1983) The microbiology of childhood gastroenteritis: Aeromonas species and other infective agents. J Infect Dis 148:68–74PubMedCrossRefGoogle Scholar
  4. Carvalho-Castro GA, Lopes CO, Leal CA et al (2010) Detection of type III secretion system genes in Aeromonas hydrophila and their relationship with virulence in Nile tilapia. Vet Microbiol 144:371–376PubMedCrossRefGoogle Scholar
  5. Castro-Escarpulli G, Figueras MJ, Aguilera-Arreola G et al (2003) Characterisation of Aeromonas spp. isolated from frozen fsh intended for human consumption in Mexico. Int J Food Microbiol 84:41–49PubMedCrossRefGoogle Scholar
  6. CLSI (2014) Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals; Second informational supplement. CLSI document VET03/VET04-S2. Wayne, PA: Clinical and Laboratory Standards InstituteGoogle Scholar
  7. De Silva BCJ, Hossain S, Wimalasena SHMP et al (2018) Putative virulence traits and antibiogram profile of Aeromonas spp. isolated from frozen white-leg shrimp (Litopenaeus vannamei) marketed in Korea. J Food Saf 38:e12470CrossRefGoogle Scholar
  8. Figueras MJ, Alperi A, Beaz-Hidalgo R et al (2011) Aeromonas rivuli sp. nov., isolated from the upstream region of a karst water rivulet. Int J Syst Evol Microbiol 61:242–248PubMedCrossRefGoogle Scholar
  9. Freeman DJ, Falkiner FR, Keane CT (1989) New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 42:872–884PubMedPubMedCentralCrossRefGoogle Scholar
  10. Haiko J, Westerlund-Wikström B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology 2:1242–1267PubMedPubMedCentralCrossRefGoogle Scholar
  11. Harley JP, Prescott LM (2002) Laboratory exercises in microbiology. The McGraw-Hill Companies, New YorkGoogle Scholar
  12. Hoel S, Vadstein O, Jakobsen AN (2019) The significance of mesophilic Aeromonas spp. in minimally processed ready-to-eat seafood. Microorganisms. 7:91PubMedCentralCrossRefGoogle Scholar
  13. Hossain S, De Silva BCJ, Wimalasena SHMP et al (2018a) Distribution of antimicrobial resistance genes and class 1 integron gene cassette arrays in motile Aeromonas spp. isolated from goldfish (Carassius auratus). Microb Drug Res 24:1217–1225CrossRefGoogle Scholar
  14. Hossain S, De Silva BCJ, Dahanayake PS et al (2018b) Characterization of virulence properties and multidrug resistance profiles in motile Aeromonas spp. isolated from zebrafish (Danio rerio). Lett Appl Microbiol 67:598–605PubMedCrossRefPubMedCentralGoogle Scholar
  15. Imziln B (2001) Occurrence and antibiotic resistance of mesophilic Aeromonas in three riverine freshwaters of Marrakech, Morocco. Sci World J 1:796–807CrossRefGoogle Scholar
  16. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73PubMedPubMedCentralCrossRefGoogle Scholar
  17. John N, Hatha AAM (2013) Distribution, extracellular virulence factors and drug resistance of motile aeromonads in freshwater ornamental fishes and associated carriage water. Int J Fish Aquac 3:92–100Google Scholar
  18. Jun JW, Kim JH, Gomez DK et al (2010) Occurrence of tetracycline-resistant Aeromonas hydrophila infection in Korean cyprinid loach (Misgurnus anguillicaudatus). Afr J Microbiol Res 4:849–855Google Scholar
  19. Kigigha LT, Oku IY, Ojesanmi AS (2012) Enumeration and characterization of bacteria associated with backwater fish species in Wilberforce island Bayelsa state Nigeria. Cont J Biol Sci 5:32–37Google Scholar
  20. Krishnakumar K, Raghavan R, Prasad G (2009) When pets become pests—exotic aquarium fishes and biological invasions in Kerala, India. Curr Sci 97:474–476Google Scholar
  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lewbart GA (2001) Bacteria and ornamental fish. Semin Avian Exot Pet Med 10:48–56CrossRefGoogle Scholar
  23. Nagar V, Shashidhar R, Bandekar JR (2013) Characterization of Aeromonas strains isolated from Indian foods using rpoD gene sequencing and whole cell protein analysis. World J Microbiol Biotechnol 29:745–752PubMedCrossRefGoogle Scholar
  24. Navarro A, Martínez-Murcia A (2018) Phylogenetic analyses of the genus based on housekeeping gene sequencing and its influence on systematics. J Appl Microbiol 125:622–631PubMedCrossRefGoogle Scholar
  25. Nawaz M, Khan SA, Khan AA et al (2010) Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish. Food Microbiol 27:327–331PubMedPubMedCentralCrossRefGoogle Scholar
  26. Pemberton JM, Kidd SP, Schmidt R (1997) Secreted enzymes of Aeromonas. FEMS Microbiol Lett 152:1–10PubMedCrossRefGoogle Scholar
  27. Rall VLM, Iaria ST, Heidtmann S, Pimenta FC et al (1998) Aeromonas species isolated from Pintado fish (Pseudoplatystoma sp): virulence factors and drug susceptibility. Rev Microbiol 29CrossRefGoogle Scholar
  28. Rowe-Magnus DA, Guerout AM, Mazel D (2002) Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol 43:1657–1669PubMedCrossRefGoogle Scholar
  29. Sen K, Rodgers M (2004) Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: a PCR identification. J Appl Microbiol 97:1077–1086CrossRefGoogle Scholar
  30. Soler L, Yáñez MA, Chacón MR (2004) Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol 54:1511–1519PubMedCrossRefGoogle Scholar
  31. Sreedharan K, Philip R, Singh IS (2013) Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental fishes of Kerala, India. Antonie Leeuwenhoek 103:53–67PubMedCrossRefGoogle Scholar
  32. Tayler AE, Ayala JA, Niumsup P et al (2010) Induction of beta-lactamase production in Aeromonas hydrophila is responsive to beta-lactam-mediated changes in peptidoglycan composition. Microbiology 156:2327–2335PubMedCrossRefGoogle Scholar
  33. Teunis P, Figueras MJ (2016) Reassessment of the enteropathogenicity of mesophilic Aeromonas species. Front Microbiol 7:1395PubMedPubMedCentralCrossRefGoogle Scholar
  34. Tomas JM (2012) The main Aeromonas pathogenic factors. ISRN Microbiol 2012:256–261CrossRefGoogle Scholar
  35. Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246:37–61CrossRefGoogle Scholar
  36. Trust TJ, Whitby JL (1976) Antibiotic resistance of bacteria in water containing ornamental fishes. Antimicrob Agent Chemother 10:598–603CrossRefGoogle Scholar
  37. Wong CYF, Heuzenroeder MW, Flower RLP (1998) Inactivation of two haemolytic toxin genes in Aeromonas hydrophila attenuates virulence in a suckling mouse model. Microbiology 144:291–298PubMedCrossRefGoogle Scholar
  38. Yáñez MA, Catalán V, Apráiz D et al (2003) Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol 53:875–883PubMedCrossRefGoogle Scholar
  39. Yano Y, Hamano K, Tsutsui I et al (2015) Occurrence, molecular characterization, and antimicrobial susceptibility of Aeromonas spp. in marine species of shrimps cultured at inland low salinity ponds. Food Microb 47:21–27CrossRefGoogle Scholar
  40. Yu HB, Zhang YL, Lau YL et al (2005) Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91. Appl Environ Microbiol 71:4469–4477PubMedPubMedCentralCrossRefGoogle Scholar
  41. Yu JH, Han JJ, Kim HJ, Kang SG et al (2010) First report of Aeromonas veronii infection in farmed Israeli carp Cyprinus carpio in Korea. J Fish Pathol 23:165–176Google Scholar
  42. Yu J, Koo BH, Kim DH et al (2015) Aeromonas sobria infection in farmed mud loach (Misgurnus mizolepis) in Korea, a bacteriological survey. Iran J Vet Res 16:194–201PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary MedicineChungbuk National UniversityCheongjuKorea
  2. 2.College of Veterinary MedicineChungnam National UniversityDaejeonKorea

Personalised recommendations