Advertisement

Genome sequences of two Antarctic strains of Pseudomonas prosekii: insights into adaptation to extreme conditions

  • Kateřina Snopková
  • Darina Čejková
  • Kristýna Dufková
  • Ivo Sedláček
  • David ŠmajsEmail author
Original Paper

Abstract

Pseudomonas prosekii is a recently described species isolated exclusively from James Ross Island close to the Antarctic Peninsula at 64° south latitude. Here, we present two P. prosekii genome sequences and their analyses with respect to phylogeny, low temperature adaptation, and potential biotechnological applications. The genome of P. prosekii P2406 comprised 5,896,482 bp and 5324 genes (GC content of 59.71%); the genome of P. prosekii P2673 consisted of 6,087,670 bp and 5511 genes (GC content of 59.50%). Whole genome sequence comparisons confirmed a close relationship between both investigated strains and strain P. prosekii LMG 26867T. Gene mining revealed the presence of genes involved in stress response, genes encoding cold shock proteins, oxidative stress proteins, osmoregulation proteins, genes for the synthesis of protection molecules, and siderophores. Comparative genome analysis of P. prosekii and P. aeruginosa PAO1 highlighted differences in genome content between extremophile species and a mesophilic opportunistic pathogen.

Keywords

Pseudomonas prosekii Extremophile Psychrotolerant Cold adaptation James Ross Island Antarctica 

Notes

Acknowledgements

This work was partly supported by the Grant Agency of the Czech Republic (GA16-21649S) to DŠ. DČ was supported by RVO0518 of the Czech Ministry of Agriculture. We thank the infrastructure of the J.G. Mendel Czech Antarctic Station (supported by the MEYS CR, Project LM2015078 CzechPolar2) and the Core Facility Genomics of CEITEC supported by the NCMG research infrastructure (LM2015091 funded by MEYS CR) for their support with obtaining the scientific data presented in this paper.

References

  1. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75.  https://doi.org/10.1186/1471-2164-9-75 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bozal N, Montes MJ, Mercadé E (2007) Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612.  https://doi.org/10.1099/ijs.0.65141-0 CrossRefPubMedGoogle Scholar
  4. Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E (2011) Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 61:2401–2405.  https://doi.org/10.1099/ijs.0.024919-0 CrossRefPubMedGoogle Scholar
  5. Chen I-MA, Markowitz VM, Chu K et al (2017) IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 45:D507–D516.  https://doi.org/10.1093/nar/gkw929 CrossRefPubMedGoogle Scholar
  6. Cimermancic P, Medema MH, Claesen J et al (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421.  https://doi.org/10.1016/j.cell.2014.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Collmer A, Badel JL, Charkowski AO et al (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci USA 97:8770–8777CrossRefGoogle Scholar
  8. D’Amico S, Collins T, Marx J-C et al (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389.  https://doi.org/10.1038/sj.embor.7400662 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Decoin V, Barbey C, Bergeau D et al (2014) A type VI secretion system is involved in Pseudomonas fluorescens bacterial competition. PLoS One 9:e89411.  https://doi.org/10.1371/journal.pone.0089411 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dhaulaniya AS, Balan B, Kumar M et al (2019) Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 201:1–16.  https://doi.org/10.1007/s00203-018-1602-3 CrossRefPubMedGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ferenci T, Spira B (2007) Variation in stress responses within a bacterial species and the indirect costs of stress resistance. Ann N Y Acad Sci 1113:105–113.  https://doi.org/10.1196/annals.1391.003 CrossRefPubMedGoogle Scholar
  13. Fuchs TM, Neuhaus K, Scherer S (2013) Life at low temperatures. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes prokaryotic communities and ecophysiology, 4th edn. Springer, Berlin, pp 375–420Google Scholar
  14. Garcia-Valdes E, Lalucat J (2016) Molecular Phylogeny and Current Taxonomy. In: Kahlon RS (ed) Pseudomonas: Molecular and Applied Biology. Springer International Publishing, Switzerland, pp 1–25Google Scholar
  15. Ghequire MGK, De Mot R (2014) Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 38:523–568.  https://doi.org/10.1111/1574-6976.12079 CrossRefPubMedGoogle Scholar
  16. Gomila M, Peña A, Mulet M et al (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol 6:214.  https://doi.org/10.3389/fmicb.2015.00214 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Goodchild A, Saunders NFW, Ertan H et al (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321.  https://doi.org/10.1111/j.1365-2958.2004.04130.x CrossRefPubMedGoogle Scholar
  18. Horikoshi K (1995) Discovering novel bacteria, with an eye to biotechnological applications. Curr Opin Biotechnol 6:292–297.  https://doi.org/10.1016/0958-1669(95)80050-6 CrossRefGoogle Scholar
  19. Hyatt D, Chen G-L, Locascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119.  https://doi.org/10.1186/1471-2105-11-119 CrossRefGoogle Scholar
  20. Kerbauy G, Vivan AC, Simões GC et al (2016) Effect of metalloantibiotic produced by Pseudomonas aeruginosa on Klebsiella pneumoniae Carbapenemase (KPC)—producing K. pneumoniae. Curr Pharm Biotechnol 17:389–397CrossRefGoogle Scholar
  21. Kosina M, Barták M, Mašlaňová I et al (2013) Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr Microbiol 67:637–646.  https://doi.org/10.1007/s00284-013-0406-6 CrossRefPubMedGoogle Scholar
  22. Kosina M, Švec P, Černohlávková J et al (2016) Description of Pseudomonas gregormendelii sp. nov., a novel Psychrotrophic Bacterium from James Ross Island Antarctica. Curr Microbiol 73:84–90.  https://doi.org/10.1007/s00284-016-1029-5 CrossRefPubMedGoogle Scholar
  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  24. López NI, Pettinari MJ, Stackebrandt E et al (2009) Pseudomonas extremaustralis sp. nov., a poly (3-hydroxybutyrate) producer isolated from an Antarctic environment. Curr Microbiol 59:514–519.  https://doi.org/10.1007/s00284-009-9469-9 CrossRefPubMedGoogle Scholar
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60.  https://doi.org/10.1186/1471-2105-14-60 CrossRefGoogle Scholar
  26. Minas K, McEwan NR, Newbold CJ, Scott KP (2011) Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett 325:162–169.  https://doi.org/10.1111/j.1574-6968.2011.02424.x CrossRefPubMedGoogle Scholar
  27. Murray TS, Egan M, Kazmierczak BI (2007) Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr 19:83.  https://doi.org/10.1097/MOP.0b013e3280123a5d CrossRefPubMedGoogle Scholar
  28. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136PubMedGoogle Scholar
  29. Price PB (2009) Microbial genesis, life and death in glacial ice. Can J Microbiol 55:1–11.  https://doi.org/10.1139/W08-117 CrossRefPubMedGoogle Scholar
  30. Raiger Iustman LJ, Tribelli PM, Ibarra JG et al (2015) Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles 19:207–220.  https://doi.org/10.1007/s00792-014-0700-7 CrossRefPubMedGoogle Scholar
  31. Rastogi RP, Richa, Sinha RP, Singh SP, Hader DP (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37:537–558.  https://doi.org/10.1007/s10295-010-0718-5 CrossRefPubMedGoogle Scholar
  32. Reddy GSN, Matsumoto GI, Schumann P et al (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719.  https://doi.org/10.1099/ijs.0.02827-0 CrossRefPubMedGoogle Scholar
  33. Schöner TA, Gassel S, Osawa A et al (2016) Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. Chem Bio Chem 17:247–253.  https://doi.org/10.1002/cbic.201500474 CrossRefPubMedGoogle Scholar
  34. Schwarz S, Hood RD, Mougous JD (2010) What is type VI secretion doing in all those bugs? Trends Microbiol 18:531–537.  https://doi.org/10.1016/j.tim.2010.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  35. van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218CrossRefGoogle Scholar
  36. Varghese NJ, Mukherjee S, Ivanova N et al (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43:6761–6771.  https://doi.org/10.1093/nar/gkv657 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43:W78–84.  https://doi.org/10.1093/nar/gkv487 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wargo MJ (2013) Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 79:2112–2120.  https://doi.org/10.1128/AEM.03565-12 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Weber T, Rausch C, Lopez P et al (2009) CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol 140:13–17CrossRefGoogle Scholar
  40. Weber T, Blin K, Duddela S et al (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–243.  https://doi.org/10.1093/nar/gkv437 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976.  https://doi.org/10.1111/j.1574-6976.2011.00292.x CrossRefPubMedGoogle Scholar
  42. Xu L, Dong Z, Fang L et al (2019) OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47:W52–W58.  https://doi.org/10.1093/nar/gkz333 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  2. 2.Department of ImmunologyVeterinary Research InstituteBrnoCzech Republic
  3. 3.Department of Experimental Biology, Faculty of ScienceCzech Collection of Microorganisms, Masaryk UniversityBrnoCzech Republic

Personalised recommendations