Advertisement

Glucose sensitizes the stationary and persistent population of Vibrio cholerae to ciprofloxacin

  • Shridhar S. Paranjape
  • Ravindranath ShashidharEmail author
Original Paper
  • 46 Downloads

Abstract

The subject of analysis in this report was the antibiotic susceptibility of V. cholerae under glucose supplementation since the metabolites can significantly alter the antibiotic sensitivity of bacteria. Glucose could change the antibiotic susceptibility in a growth phase-dependent manner, however, the antibiotic susceptibility of exponentially growing cells was not affected in the presence of glucose. What has been shown is that the stationary phase cells which show higher antibiotic tolerance, could be sensitized to ciprofloxacin and ampicillin by glucose supplementation (tenfold sensitive). The glucose increases the respiration which in turn increases the metabolism and cell division rate. Furthermore, the addition of glucose could increase the susceptibility of persister cells to ciprofloxacin only. In general, the bacterial susceptibility can be increased by combining the antibiotics with glucose.

Keywords

Vibrio cholerae Glucose E. coli Persister cells Ciprofloxacin 

Notes

Acknowledgements

We would like to acknowledge Department of atomic energy for their support.

Funding

This work was funded by Department of atomic energy, India.

Compliance with ethical standards

Conflict of interest

We declare no conflict of interest.

Supplementary material

203_2019_1751_MOESM1_ESM.docx (171 kb)
Supplementary file1 (DOCX 170 kb)

References

  1. Abubakar A, Bwire G, Azman AS, Bouhenia M, Deng LL, Wamala JF et al (2018) Cholera epidemic in South Sudan and Uganda and need for international collaboration in cholera control. Emerg Infect Dis J 24(5):883.  https://doi.org/10.3201/eid2405.171651 CrossRefGoogle Scholar
  2. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473(7346):216–220.  https://doi.org/10.1038/nature10069 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amato SM, Brynildsen MP (2014) Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS ONE 9(3):e93110.  https://doi.org/10.1371/journal.pone.0093110 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science (New York) 305(5690):1622–1625.  https://doi.org/10.1126/science.1099390 CrossRefGoogle Scholar
  5. Colwell RR, Spira WM (1992) The ecology of Vibrio cholerae. In: Barua D, Greenough WB (eds) Cholera, Springer US, Boston, pp 107–127. http://dx.doi.org/10.1007/978-1-4757-9688-9_6CrossRefGoogle Scholar
  6. Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA et al (2016) Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1(5):16051.  https://doi.org/10.1038/nmicrobiol.2016.51 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Defraine V, Fauvart M, Michiels J (2018) Fighting bacterial persistence: current and emerging anti-persister strategies and therapeutics. Drug Resist Updates 38:12–26.  https://doi.org/10.1016/j.drup.2018.03.002 CrossRefGoogle Scholar
  8. Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ (2014) Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513(7518):418–421.  https://doi.org/10.1038/nature13469 CrossRefPubMedGoogle Scholar
  9. Gutierrez A, Jain S, Bhargava P, Hamblin M, Lobritz MA, Collins JJ (2017) Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Mol Cell 68(6):1147–1154.e3.  https://doi.org/10.1016/j.molcel.2017.11.012 CrossRefPubMedGoogle Scholar
  10. Hatchette TF, Farina D (2011) Infectious diarrhea: when to test and when to treat. CMAJ 183(3):339–344.  https://doi.org/10.1503/cmaj.091495 CrossRefPubMedPubMedCentralGoogle Scholar
  11. J Hinson, P Raven, S Chew (2010) Insulin and the regulation of plasma glucose. In: Hinson J, Raven P, Chew S (eds) The endocrine system, 2nd edn. Churchill Livingstone, London, pp 129–145. https://www.sciencedirect.com/science/article/pii/B9780702033728000112 CrossRefGoogle Scholar
  12. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18CrossRefGoogle Scholar
  13. Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60(4):397–407.  https://doi.org/10.1099/jmm.0.023051-0 CrossRefPubMedGoogle Scholar
  14. Martinez RM, Megli CJ, Taylor RK (2010) Growth and laboratory maintenance of Vibrio cholerae. Curr Protoc Microbiol 17:6A.  https://doi.org/10.1002/9780471729259.mc06a01s17 CrossRefGoogle Scholar
  15. Meylan S, Porter CBM, Yang JH, Belenky P, Gutierrez A, Lobritz MA et al (2017) Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol 24(2):195–206.  https://doi.org/10.1016/j.chembiol.2016.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Oh YT, Kim HY, Kim EJ, Go J, Hwang W, Kim HR et al (2016) Selective and efficient elimination of Vibrio cholerae with a chemical modulator that targets glucose metabolism. Front Cell Infect Microbiol 6:156.  https://doi.org/10.3389/fcimb.2016.00156 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Peng B, Su Y, Li H, Han Y, Guo C, Tian Y, Peng X (2015) Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab 21(2):249–262.  https://doi.org/10.1016/j.cmet.2015.01.008 CrossRefPubMedGoogle Scholar
  18. Pradhan S, Baidya AK, Ghosh A, Paul K, Chowdhury R (2010) The el tor biotype of Vibrio cholerae exhibits a growth advantage in the stationary phase in mixed cultures with the classical biotype. J Bacteriol 192(4):955–963.  https://doi.org/10.1128/JB.01180-09 CrossRefPubMedGoogle Scholar
  19. Prax M, Mechler L, Weidenmaier C, Bertram R (2016) Glucose augments killing efficiency of daptomycin challenged Staphylococcus aureus persisters. PLoS ONE 11(3):e0150907.  https://doi.org/10.1371/journal.pone.0150907 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in luria-bertani broth. J Bacteriol 189(23):8746–8749.  https://doi.org/10.1128/JB.01368-07 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Su Y, Peng B, Li H, Cheng Z, Zhang T, Zhu J et al (2018) Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc Natl Acad Sci 115(7):E1578–E1587.  https://doi.org/10.1073/pnas.1714645115 CrossRefPubMedGoogle Scholar
  22. Thorsing M, Bentin T, Givskov M, Tolker-Nielsen T, Goltermann L (2015) The bactericidal activity of β-lactam antibiotics is increased by metabolizable sugar species. Microbiology 161(10):1999–2007.  https://doi.org/10.1099/mic.0.000152 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ye J, Lin X, Cheng Z, Su Y, Li W, Ali F et al (2018) Identification and efficacy of glycine, serine and threonine metabolism in potentiating kanamycin-mediated killing of Edwardsiella piscicida. J Proteom 183:34–44.  https://doi.org/10.1016/j.jprot.2018.05.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shridhar S. Paranjape
    • 1
    • 2
  • Ravindranath Shashidhar
    • 1
    • 2
    Email author
  1. 1.Food Technology DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Life SciencesHomi Bhabha National Institute (Deemed to be University)MumbaiIndia

Personalised recommendations