Advertisement

Comparison of clinical and sewage isolates of Acinetobacter baumannii from two long-term care facilities in Zagreb; mechanisms and routes of spread

  • Branka BedenićEmail author
  • Marko Siroglavić
  • Mia Slade
  • Dorotea Šijak
  • Svjetlana Dekić
  • Martina Šeruga Musić
  • Ana Godan-Hauptman
  • Jasna Hrenović
Original Paper

Abstract

In the previous studies OXA-23-like and OXA-24-like β-lactamase were reported among Acinetobacter baumannii in both hospitals and long-term care facilities (LTCF) in Croatia. The aim of this study was to analyze clinical and sewage A. baumannii isolates from two nursing homes in Zagreb, with regard to antibiotic susceptibility and resistance mechanisms, to determine the route of spread of carbapenem-resistant isolates. Nine clinical isolates were collected from February to May 2017 whereas in April 2017, ten A. baumannii isolates were collected from sewage of two nursing homes in Zagreb. Antibiotics susceptibility was determined by broth microdilution method. The presence of carbapenemase and extended spectrum β-lactamases (ESBL) encoding genes was explored by PCR. Conjugation and transformation experiments were performed as previously described. Genotyping was performed by SG determination, PFGE and MLST. Seven clinical isolates were positive for blaOXA24-like whereas two clinical and environmental carbapenem-resistant isolates, respectively, were found to possess blaOXA-23-like genes. Attempts to transfer imipenem resistance were unsuccessful indicating chromosomal location of blaOXA-23 gene. All carbapenem-resistant isolates belonged to SG- 1 (IC-2) whereas the rest of the isolates susceptible to carbapenems were allocated to SG- 2 (IC-1). PFGE analysis revealed low degree of genetic variability within both IC- I and IC- II. MLST corroborated that two environmental OXA-23 isolates belong to the ST-195. This study showed dissemination of OXA-23 producing A. baumannii from the nursing home into the urban sewage. Disinfection of nursing home sewage should be recommended in order to prevent the spread of resistance genes into the community sewage.

Keywords

Carbapenem OXA-23 Resistance Long-term care facility Croatia 

Notes

Funding

This work has been supported in a part by the Croatian Science Foundation (project no. IP-2014-09-5656).

References

  1. Arlet G, Brami G, Deere D, Flippo A, Gaillot O, Lagrange PH (1995) Molecular characterization by PCR restriction fragment polymorphism of TEM β-lactamases. FEMS Microbiol Lett 134:203–208PubMedPubMedCentralGoogle Scholar
  2. Bedenić B, Beader N, Godič-Torkar K, Vranić-Ladavac M, Luxner J, Veir Z, Zarfel G, Grisold A (2014) Nursing home as reservoir of carbapenem-resistant Acinetobacter baumannii. Microb Drug Resist 21:270–278CrossRefGoogle Scholar
  3. Bertini A, Poirel L, Mugnier P, Villa J, Nordman P, Carattoli A (2010) Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother 54:4168–4177PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bonnin RA, Nordmann P, Potron A, Lecuyer H, Zahar JR, Poirel L (2011) Carbapenem hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 55:349–354PubMedCrossRefPubMedCentralGoogle Scholar
  5. Brown S, Amyes S (2006) OXA β-lactamase in Acinetobacter: the story so far. J Antimicrob Chemother 57:1–3PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cheng VC, Chen JH, Ng WC, Wong JY, Chow DM, Law TC (2016) Emergence of carbapenem-resistant Acinetobacter baumannii in nursing homes with high background rates of MRSA colonization. Infect Control Hosp Epidemiol 37:983–986PubMedCrossRefPubMedCentralGoogle Scholar
  7. Clinical and Laboratory Standards Institute (2016) Performance standards for antimicrobial susceptibility testing; 23rd Informational Supplement. CLSI, Wayne, pp M100–M123Google Scholar
  8. Cornaglia G, Riccio ML, Mazzariol A, Lauretti L, Fontana R, Rossolini GM (1999) Appearance of IMP-1 metallo-β-lactamase in Europe. Lancet 353:899–900PubMedCrossRefPubMedCentralGoogle Scholar
  9. David JF (2019) Ecology of millipedes (Diplopoda) in the context of global change. Soil org 81:719–733Google Scholar
  10. Elwell LP, Falkow S (1986) The characterization of R plasmids and the detection of plasmid-specified genes. In: Lorian V (ed) Antibiotics in laboratory medicine, 2nd edn. Williams and Wilkins, Baltimore, pp 683–721Google Scholar
  11. Franolić-Kukina I, Bedenić B, Budimir A, Herljević Z, Vraneš J, Higgins P (2011) Clonal spread of carbapenem-resistant OXA-72 positive Acinetobacter baumannii in a Croatian University Hospital. Int J Infect Dis 15:706–709CrossRefGoogle Scholar
  12. Goić-Barišić I, Bedenić B, Tonkić M, Katić S, Kalenić S, Punda-Polić V (2007) Molecular characterisation of carbapenem resistant Acinetobacter baumannii in different intensive care units in University Hospital Split, Croatia. J Chemother 2(19):462–464CrossRefGoogle Scholar
  13. Goić-Barišić I, Bedenić B, Tonkić M, Novak A, Katić S, Kalenić S, Punda Polić V (2009) Occurrence of OXA-107 and ISAba 1 in carbapenem-resistant isolates of Acinetobacter baumannii from Croatia. J Clin Microbiol 47:3348–3349PubMedPubMedCentralCrossRefGoogle Scholar
  14. Goić-Barišić I, Towner KJ, Kovačić A, Šiško-Kraljević K, Tonkić M, Novak A, Towner K (2011) Outbreak in Croatia caused by a new carbapenem-resistant clone of Acinetobacter baumannii producing OXA-72 carbapenemase. J Hospit Infect 77:68–369Google Scholar
  15. Goić-Barišić I, Hrenović J, Kovačić A, Šeruga-Musić M (2016) Emergence of oxacillinases in environmental carbapenem-resistant Acinetobacter baumannii associated with clinical isolates. Microb Drug Resist 22:559–563PubMedCrossRefPubMedCentralGoogle Scholar
  16. Higgins P, Poirel L, Lehmann M, Nordmann P, Seifert H (2009) OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 53:5035–5038PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hrabak J, Stolobova M, Studentova V, Fridrichova M, Chudackova E, Zemlickova H (2011) NDM-1 producing Acinetobacter baumannii isolated from a patient repatrieted to the Czech Republic from Egypt. Eurosurveillance 17(7):20085Google Scholar
  18. Hrenović J, Durn G, Goić-Barišić I, Kovačić A (2014) Occurrence of an environmental Acinetobacter baumannii strain similar to a clinical isolate in paleosol from Croatia. Appl Environ Microbiol 80:2860–2866PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hrenović J, Goić-Barišić I, Kazazić S, Kovačić A, Ganjto M, Tonkić M (2016) Carbapenem-resistant isolates of Acinetobacter baumannii in a municipal wastewater treatment plant, Croatia. Eurosurveillance.  https://doi.org/10.2807/1560-7917 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hrenović J, Durn G, Šeruga-Musić M, Dekić S, Troskot-Čorbić T, Škorić D (2017) Extensively and multi drug-resistant Acinetobacter baumannii recovered from technosol at a dump site in Croatia. Sci Total Environ 607–608:1049–1055PubMedCrossRefPubMedCentralGoogle Scholar
  21. Kaufman ME (1998) Pulsed-field gel electrophoresis. Molecular bacteriology. Protocols and clinical applications, 1st edn. Humana Press Inc., New York, pp 33–51Google Scholar
  22. Ladavac R, Bedenić B, Vranić-Ladavac M, Barišić N, Karčić N, Pompe K (2017) Emergence of different Acinetobacter baumannii clones in a Croatian hospital and correlation with antibiotic susceptibility. J Glob Antimicrob Resist 10:213–218PubMedCrossRefPubMedCentralGoogle Scholar
  23. Lee K, Jum JH, Yong D, Lee HM, Kim HD, Docquier JD (2005a) Novel acquired metallo-β-lactamase gene, bla (SIM-1) in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 49:4485–4491PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lee K, Lim YS, Yong D, Yum JH, Chong Y (2005b) Evaluation of the Hodge test and the imipenem-EDTA-double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp and Acinetobacter spp. J Clin Microbiol 41:4623–4629CrossRefGoogle Scholar
  25. Lee CM, Lai CC, Chiang HT, Lu MC, Wang LF, Tsai TLal. (2017) Presence of multidrug-resistant A. baumannii in the residents and environments of long-term care facilities in Taiwan. J Microbiol Immunol Infect 50:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  26. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG (2002) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281CrossRefGoogle Scholar
  27. Mrsić N (1997) Uvod v pedozoologijo-sistematika in ekologija s splošnim pregledom talnih živali. Tehnička založba Slovenije, LjubljanaGoogle Scholar
  28. Nüesch-Inderbinen MT, Hächler H, Kayser FH (1996) Detection of genes coding for extended-spectrum SHV β-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis 15:398–402PubMedCrossRefPubMedCentralGoogle Scholar
  29. Pagani L, Mantengoli E, Migliavacca R, Nucleo E, Pollini S, Spalla M (2004) Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing PER-1 extended-spectrum β-lactamase in Northern Italy. J Clin Microbiol 42:2523–2529PubMedPubMedCentralCrossRefGoogle Scholar
  30. Paton R, Miles RS, Hood J, Amyes SG, Miles RS (1993) ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents 2:81–87PubMedCrossRefPubMedCentralGoogle Scholar
  31. Perilli M, Pelegrini C, Calenza G, Segatore B, Amicosante G (2011) First report from Italy of bla VIM-1 and bla TEM-1 genes in Pseudomonas putida and Acinetobacter baumannii isolated from wastewater. J Chemother 23:181–182PubMedCrossRefPubMedCentralGoogle Scholar
  32. Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microb Infect 12:826–836CrossRefGoogle Scholar
  33. Poirel L, Walsh TR, Cuveiller V, Nordman P (2011) Multiplex PCR for detection of acquired carbapenemases genes. Diagn Microbiol Infect Dis 70:119–125PubMedCrossRefPubMedCentralGoogle Scholar
  34. Pournaras S, Markogiannakis A, Ikonomidis A, Kondyli L, Bethimouti K, Maniatis AN (2006) Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J Antimicrob Chemother 57:557–561PubMedCrossRefPubMedCentralGoogle Scholar
  35. Robledo IE, Aquino EE, Sante MI, Santana JL, Oterko DM, Leon CF (2010) Detection of KPC in Acinetobacter spp in Puerto Rico. Antimicrob Agents Chemother 43:1354–1357CrossRefGoogle Scholar
  36. Šeruga-Musić M, Hrenović J, Goić-Barišić I, Hunjak B, Škorić D, Ivanković T (2017) Emission of extensively-drug-resistant Acinetobacter baumannii from hospital settings to the natural environment. J Hosp Infect 96:323–327PubMedCrossRefPubMedCentralGoogle Scholar
  37. Tenover F, Arbeit R, Goering RV, Mickelsen A, Murray BE, Persing DH et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239PubMedPubMedCentralGoogle Scholar
  38. Turton JF, Ward ME, Woodford N, Kaufman ME, Pike R, Livermore DM et al (2006) The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 258:72–77PubMedCrossRefPubMedCentralGoogle Scholar
  39. Turton JF, Gabriel SN, Valderrey C, Kaufmann ME, Pitt TL (2007) Use of sequence based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. Clin Microbiol Infect 13:807–815PubMedCrossRefPubMedCentralGoogle Scholar
  40. Van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM (2005) The carbapenem-inacitvation method (CIM) a simple and low-cost alternative for the Carba NP test o assess phenotypic carbapenemase activity in Gram-negative rods. PLoS ONE 10:3Google Scholar
  41. Vilalon P, Valdezete S, Medina-Pascual MJ, Curasco G, Vindel A, Saez-Nieto JA (2011) Epidemiology of the Acinetobacter-derived cephalosporinase, carbapenem-hydrolyzing oxacillinase and metallo-β-lactamase genes, and of common insertion sequences, in epidemic clones of Acinetobacter baumannii. J Antimicrob Chemother 68:550–553CrossRefGoogle Scholar
  42. Vranić-Ladavac M, Bedenić B, Minandri F, Ištok IM, Bošnjak Z, Frančula-Zaninović S, Visca P (2014) Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009–2010. Eur J Clin Microbiol Infect Dis 33:471–478PubMedCrossRefPubMedCentralGoogle Scholar
  43. Woodford N, Ward ME, Kaufmann ME, Turton J, Fagan EJ, James D (2004) Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J Antimicrob Chemother 54:735–743PubMedCrossRefPubMedCentralGoogle Scholar
  44. Woodford N, Ellington MJ, Coelho J, Turton J, Ward ME, Brown S (2006) Multiplex PCR for genes encoding prevalent OXA carbapenemases. Int J Antimicrob Agents 2006(27):351–353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Branka Bedenić
    • 1
    • 2
    Email author
  • Marko Siroglavić
    • 3
  • Mia Slade
    • 4
  • Dorotea Šijak
    • 1
  • Svjetlana Dekić
    • 5
  • Martina Šeruga Musić
    • 5
  • Ana Godan-Hauptman
    • 6
  • Jasna Hrenović
    • 5
  1. 1.Department of Microbiology, School of MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Clinical Department of Clinical and Molecular MicrobiologyUniversity Hospital Centre ZagrebZagrebCroatia
  3. 3.Clinical Department of Transfusion Medicine and Transplantation BiologyUniversity Hospital Centre ZagrebZagrebCroatia
  4. 4.Croatian Institute for Transfusion MedicineZagrebCroatia
  5. 5.Faculty of ScienceUniversity of ZagrebZagrebCroatia
  6. 6.Clinic for Internal MedicineUniversity Hospital Centre ZagrebZagrebCroatia

Personalised recommendations