Advertisement

Archives of Microbiology

, Volume 201, Issue 10, pp 1399–1404 | Cite as

Prosthecochloris marina sp. nov., a new green sulfur bacterium from the coastal zone of the South China Sea

  • Irina A. BryantsevaEmail author
  • Alexey L. Tarasov
  • Nadezhda A. Kostrikina
  • Vasil A. Gaisin
  • Denis S. Grouzdev
  • Vladimir M. Gorlenko
Original Paper
  • 199 Downloads

Abstract

A Gram-negative, anaerobic photoautotroph, nonmotile, oval bacterium possessing gas vesicles and having no prosthecae, designated as V1, was isolated from the South China Sea coastal zone. It had chlorosomes as photosynthetic structures, and bacteriochlorophyll c as the major photosynthetic pigment. The strain was found to grow at 20–35 °C, pH 6.3–8.0 (optimum, pH 7.1) and with 0.7–5.8% (w/v) NaCl (optimum, 1–1.8%). In the presence of sulfide and bicarbonate, acetate, and fructose promoted growth. The DNA G+C content was 47 mol%. While the new isolate belonged to the Chlorobiaceae genus Prosthecochloris, it exhibited low similarity of the 16S rRNA gene sequences (96.21–96.78%) to other members of this genus. Comparison of the genome nucleotide sequences of strain V1 revealed that the new isolate was remote from the Chlorobiaceae type strains both in dDDH (16.8–18.9%) and in ANI (75.2–77.8%). We propose to assign the isolate to a new species, Prosthecochloris marina sp. nov., with the type strain V1T ( = VKM-3301T = KCTC 15824T).

Keywords

Green sulfur bacteria Anaerobic photoautotroph Chlorosomes Prosthecochloris marina 

Notes

Acknowledgements

This work was financially supported by the Presidium of the Russian Academy of Sciences via the program “Evolution of the Organic World and Planet-Scale Processes” (Subprogram 2), by the Russian Foundation for Basic Research (Project no. 19–04-00423), and the Ministry of Science and Higher Education of the Russian Federation. DNA sequencing was partially performed using the scientific equipment of the Core Research Facility "Bioengineering" (Research Center of Biotechnology RAS).

References

  1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477CrossRefGoogle Scholar
  2. Chun J, Oren A, Ventosa A, Henrik C, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466CrossRefGoogle Scholar
  3. Gorlenko VM (1970) A new phototrophic green sulphur bacterium Prosthecochloris aestuarii nov. gen. nov. spec. Zeitschrift für allgemeine Mikrobiologie 10:147–149CrossRefGoogle Scholar
  4. Gorlenko VM (2001) Genus V. Prosthecochloris. In: Boone DR, Castenholz RW (eds) The Archaea and the deeply branching and phototrophic Bacteria. Bergey’s Manual of systematic bacteriology, 2nd edn, vol. 1, Springer, New York, pp 617–620Google Scholar
  5. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951CrossRefGoogle Scholar
  6. Imhoff JF (2014a) The family Chlorobiaceae. In: Rosenberg E, De Long EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, pp 501–514. https://doi.org/10.1007/978-3-642-38954-2_142 Google Scholar
  7. Imhoff JF (2014b) Biology of green sulfur bacteria. In: eLS. John Wiley and Sons, Ltd: Chichester. https://doi.org/10.1002/9780470015902.a0000458.pub2
  8. Imhoff JF, Thiel V (2010) Phylogeny and taxonomy of Chlorobiaceae. Photosynth Res 104:123–136.  https://doi.org/10.1007/s11120-009-9510-7 CrossRefPubMedGoogle Scholar
  9. Kumar PA, Srinivas TNR, Sasikala C, Ramana CV, Süling J, Imhoff JF (2007) Selective enrichment of green sulfur bacteria in the presence of 4-aminobenzesulfonate (sulfanilate). World J Microbiol Biotechnol 23:393–399CrossRefGoogle Scholar
  10. Kumar PA, Srinivas TNR, Sasikala C, Ramana CV, Süling J, Imhoff JF (2009) Prosthecochloris indica sp. nov., a novel green sulfur bacterium from a marine aquaculture pond, Kakinada India. J Gen Appl Microbiol 55:163–169CrossRefGoogle Scholar
  11. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  12. Overmann J (2001) Green sulfur bacteria. In: Boone DR, Castenholz RW (eds) The Archaea and the deeply branching and phototrophic Bacteria. Bergey’s Manual of systematic bacteriology, vol 1. Springer, New York, pp 601–623Google Scholar
  13. Pfennig N, Trüper HG (1971) Type and neotype strains of the species of phototrophic bacteria maintained in pure culture. Int J Syst Evol Microbiol 21:19–24Google Scholar
  14. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–218CrossRefGoogle Scholar
  15. Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr 4:e1900v1.Google Scholar
  16. Ryter A, Kellenberger E (1958) Etude au microscope électronique des plasmes contenant de l’acide déoxyribonucléique 1 Les nucléoides des bactéries en croissance active. Z Naturforsch 13:597–605CrossRefGoogle Scholar
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  18. Tarasov AL, Osipov GA, Borzenkov IA (2015) Desulfovibrios from marine biofoulings at the South Vietnam coastal area and description of Desulfovibrio hontreensis sp. nov. Microbiology 84:654–664.  https://doi.org/10.1134/S0026261715050161 CrossRefGoogle Scholar
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S, Li W (2013) Prokaryotic genome annotation pipeline. The NCBI handbook, 2nd ed. National Center for Biotechnology Information, BethesdaGoogle Scholar
  20. Thiel V, Tank M, Bryant DA (2018) Diversity of chlorophototrophic bacteria revealed in the omics era. Annu Rev Plant Biol 69:21–49.  https://doi.org/10.1146/annurev-arplant-042817-040500 CrossRefPubMedGoogle Scholar
  21. Tourova TP, Kovaleva OL, Gorlenko VM, Ivanovsky RN (2013) Use of genes of carbon metabolism enzymes as molecular markers of Chlorobi phylum representatives. Microbiology (Mikrobiologiya) 82:784–793CrossRefGoogle Scholar
  22. Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2: Unit 2.4. https://dx.doi.org/10.1002/0471142727.mb0204s56

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Irina A. Bryantseva
    • 1
    • 3
    Email author
  • Alexey L. Tarasov
    • 1
  • Nadezhda A. Kostrikina
    • 1
  • Vasil A. Gaisin
    • 2
  • Denis S. Grouzdev
    • 2
  • Vladimir M. Gorlenko
    • 1
  1. 1.Winogradsky Institute of Microbiology, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Bioengineering, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  3. 3.MoscowRussia

Personalised recommendations