Skip to main content

Advertisement

Log in

Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present study aims to characterize nodule endophytic bacteria of spontaneous lupine plants regarding their diversity and their plant growth promoting (PGP) traits. The potential of PGPR inoculation was investigated to improve white lupine growth across controlled, semi-natural and field conditions. Lupinus luteus and Lupinus angustifolius nodules were shown inhabited by a large diversity of endophytes. Several endophytes harbor numerous plant growth promotion traits such as phosphates solubilization, siderophores production and 1-aminocyclopropane-1-carboxylate deaminase activity. In vivo analysis confirmed the plant growth promotion ability of two strains (Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215) in both sterilized and semi-natural conditions. Under field conditions, the co-inoculation of lupine by these strains increased shoot N content and grain yield by 25% and 36%, respectively. These two strains Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215 are effective plant growth-promoting bacteria and they may be used to develop an eco-friendly biofertilizer to boost white lupine productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelkrim S, Jebara S, Saadani O et al (2017) Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J Basic Microbiol 58(7):579–589

    Google Scholar 

  • Abdel-Monaim MF, Gabr MR, El-Gantiry SM et al (2014) Pathological and physiological studies on root rot disease in white lupine (Lupinus termis Forsik). Int J Agric Sci 4:261–267

    Google Scholar 

  • Aeron A, Maheshwari DK, Dheeman S et al (2017) Plant growth promotion and suppression of charcoal-rot fungus (Macrophomina phaseolina) in velvet bean (Mucuna pruriens L.) by root nodule bacteria. J Phytopathol 165:463–478. https://doi.org/10.1111/jph.12581

    Article  CAS  Google Scholar 

  • Ahmad M, Ahmad I, Hilger TH et al (2018) Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ 6:e5122

    PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502

    CAS  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00971

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansari FA, Ahmad I (2018) Biofilm development, plant growth promoting traits and rhizosphere colonization by Pseudomonas entomophila FAP1: a promising PGPR. Adv Microbiol 8:235

    CAS  Google Scholar 

  • Babu SV, Triveni S, Reddy RS, Sathyanarayana J (2017) Screening of maize rhizosperic phosphate solubilizing isolates for plant growth promoting characteristics. Int J Curr Microbiol Appl Sci 6:2090–2101

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS et al (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34:454–466

    CAS  Google Scholar 

  • Bahroun A, Jousset A, Mhamdi R et al (2018) Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: assessment of fungi soil suppressiveness and plant protection induction. Appl Soil Ecol 124:131–140. https://doi.org/10.1016/j.apsoil.2017.10.025

    Article  Google Scholar 

  • Balcazar W, Rondón J, Rengifo M et al (2015) Bioprospecting glacial ice for plant growth promoting bacteria. Microbiol Res 177:1–7. https://doi.org/10.1016/J.MICRES.2015.05.001

    Article  PubMed  Google Scholar 

  • Balseiro-Romero M, Gkorezis P, Kidd PS et al (2017) Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation. Sci Total Env 581–582:676–688. https://doi.org/10.1016/j.scitotenv.2016.12.180

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    CAS  PubMed  Google Scholar 

  • Bautista VV, Barcellano EV, Monsalud RG, Yokota A (2017) Isolation and identification of bacteria from root nodules of Philippine legumes using 16S rRNA Gene Sequencing. Philipp Agric Sci 100:415–428

    Google Scholar 

  • Beghalem H, Aliliche K, Chriki A, Landoulsi A (2017) Molecular and phenotypic characterization of endophytic bacteria isolated from sulla nodules. Microb Pathog 111:225–231. https://doi.org/10.1016/j.micpath.2017.08.049

    Article  CAS  PubMed  Google Scholar 

  • Bidondo LF, Silvani V, Colombo R et al (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872. https://doi.org/10.1016/j.soilbio.2011.05.004

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Canellas LP, Balmori DM, Médici LO et al (2013) A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366:119–132

    CAS  Google Scholar 

  • Cardoso P, Alves A, Silveira P et al (2018) Bacteria from nodules of wild legume species: phylogenetic diversity, plant growth promotion abilities and osmotolerance. Sci Total Environ 645:1094–1102

    CAS  PubMed  Google Scholar 

  • Carro L, Flores-Félix JD, Ramírez-Bahena MH et al (2014) Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int J Syst Evol Microbiol 64:3028–3033. https://doi.org/10.1099/ijs.0.060830-0

    Article  CAS  PubMed  Google Scholar 

  • Chekireb D, Crovadore J, Brachmann A et al (2017) Whole-genome sequences of 14 strains of Bradyrhizobium canariense and 1 Strain of Bradyrhizobium japonicum isolated from Lupinus spp. in Algeria. Genome Announc 5:e00676-17

    PubMed  PubMed Central  Google Scholar 

  • Chennappa G, Sreenivasa MY, Nagaraja H (2018) Azotobacter salinestris: a novel pesticide-degrading and prominent biocontrol PGPR bacteria. Microorganisms for Green Revolution. Springer, New York, pp 23–43

    Google Scholar 

  • Chinnaswamy A, Coba de la Peña T, Stoll A et al (2018) A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann Appl Biol 172:295–308. https://doi.org/10.1111/aab.12420

    Article  CAS  Google Scholar 

  • Daur I, Saad MM, Eida AA et al (2018) Boosting alfalfa (Medicago sativa L.) production with rhizobacteria from various plants in Saudi Arabia. Front Microbiol 9:477. https://doi.org/10.3389/fmicb.2018.00477

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan J, Müller KM, Charles TC et al (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436. https://doi.org/10.1007/s00248-008-9407-6

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV et al (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01887

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan P, Chen D, He Y et al (2016) Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. Int J Phytoremediation 18:1113–1121

    CAS  PubMed  Google Scholar 

  • Fan M, Liu Z, Nan L et al (2018) Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 217:51–59. https://doi.org/10.1016/j.micres.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  • Feigl F, Anger V (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91:282–284

    CAS  PubMed  Google Scholar 

  • García JE, Maroniche G, Creus C et al (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29

    PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grady EN, MacDonald J, Liu L et al (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203. https://doi.org/10.1186/s12934-016-0603-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Granada CE, Vargas LK, Sant’Anna FH et al (2018) The genomes of three Bradyrhizobium sp. isolated from root nodules of Lupinus albescens grown in extremely poor soils display important genes for resistance to environmental stress. Genet Mol Biol 41:502–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gresta F, Wink M, Prins U, et al (2017) Lupins in European cropping systems

  • Hashem A, Abd-Allah EF, Alqarawi AA et al (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01089

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassen AI, Habig JH, Lamprecht SC (2018) Assessing root nodule microsymbionts in healthy and declined rooibos (Aspalathus linearis burm f.) at a plantation in South Africa. J Plant Interact 13:277–279

    Google Scholar 

  • Hayat R, Sheirdil RA, Iftikhar-ul-Hassan M, Ahmed I (2013) Characterization and identification of compost bacteria based on 16S rRNA gene sequencing. Ann Microbiol 63:905–912. https://doi.org/10.1007/s13213-012-0542-4

    Article  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309. https://doi.org/10.1099/ijs.0.021014-0

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez F, Angelini J, Taurian T et al (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 32:49–55. https://doi.org/10.1016/j.syapm.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Abdel-Azeem A, Abdelaziz A (2015) Soil fungi of healthy and infested lupine (Lupinus termis) and its role in controlling of lupine root rot in vitro. J Pure Appl Microbiol 9:97–107

    Google Scholar 

  • Imran A, Mirza M, Shah T et al (2015) Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00859

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104:657–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph B, Ranjan Patra R, Lawrence R (2012) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Gorgan Univ Agric Sci 1:141–152. https://doi.org/10.22069/IJPP.2012.532

    Article  Google Scholar 

  • Kjeldahl C (1883) A new method for the determination of nitrogen in organic matter. Z Anal Chem 22:366

    Google Scholar 

  • Kobayashi H, Broughton WJ (2008) Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascade. Nitrogen-fixing leguminous symbioses. Springer, New York, pp 117–152

    Google Scholar 

  • Kumar S, Bauddh K, Barman SC, Singh RP (2014) Amendments of microbial biofertilizers and organic substances reduces requirement of urea and DAP with enhanced nutrient availability and productivity of wheat (Triticum aestivum L.). Ecol Eng 71:432–437

    Google Scholar 

  • Kumar V, Pathak DV, Dudeja SS et al (2017) Legume nodule endophytes more diverse than endophytes from roots of legumes or non legumes in soils of Haryana, India. J Microbiol Biotechnol Res 3:83–92

    Google Scholar 

  • Lichtenthaler HK (1987) [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology. Elsevier, Amsterdam, pp 350–382

    Google Scholar 

  • Liu K, Newman M, McInroy JA et al (2017) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107:928–936. https://doi.org/10.1094/phyto-02-17-0051-r

    Article  CAS  PubMed  Google Scholar 

  • Louden BC, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ JMBE 12:51–53

    PubMed  Google Scholar 

  • Lucas MM, Stoddard FL, Annicchiarico P et al (2015) The future of lupin as a protein crop in Europe. Front Plant Sci 6:705. https://doi.org/10.3389/fpls.2015.00705

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes Filho PF, Vasconcellos RLF, De Paula AM, Cardoso E (2010) Evaluating the potential of forest species under “microbial management” for the restoration of degraded mining areas. Water Air Soil Pollut 208:79–89

    CAS  Google Scholar 

  • Mesa-Marín J, Del-Saz NF, Rodríguez-Llorente ID et al (2018) PGPR reduce root respiration and oxidative stress enhancing spartina maritima root growth and heavy metal rhizoaccumulation. Front Plant Sci 9:1500. https://doi.org/10.3389/fpls.2018.01500

    Article  PubMed  PubMed Central  Google Scholar 

  • Mhamdi R, Laguerre G, Aouani ME et al (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol Ecol 41:77–84

    CAS  PubMed  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Wahab Z, Marziah M (2010) Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv. ‘Berangan’). Sci Hortic (Amsterdam) 126:80–87. https://doi.org/10.1016/j.scienta.2010.06.005

    Article  Google Scholar 

  • Michaelis J, Diekmann M (2018) Effects of soil types and bacteria inoculum on the cultivation and reintroduction success of rare plant species. Plant Ecol 219:441–453. https://doi.org/10.1007/s11258-018-0807-5

    Article  Google Scholar 

  • Mohamed EAH, Farag AG, Youssef SA (2018) Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. J Environ Prot (Irvine, Calif) 9:266

    CAS  Google Scholar 

  • Morte A, Pérez-Gilabert M, Gutiérrez A et al (2017) Basic and applied research for desert truffle cultivation. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza—eco-physiology, secondary metabolites, nanomaterials. Springer International Publishing, Cham, pp 23–42

    Google Scholar 

  • Msaddak A, Durán D, Rejili M et al (2017) Diverse bacteria affiliated with the genera Microvirga, Phyllobacterium and Bradyrhizobium nodulate Lupinus micranthus growing in soils of Northern Tunisia. Appl Env Microbiol. https://doi.org/10.1128/aem.02820-16

    Article  Google Scholar 

  • Muresu R, Polone E, Sulas L et al (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400. https://doi.org/10.1111/j.1574-6941.2007.00424.x

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nandi M, Selin C, Brawerman G et al (2017) Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol Control 108:47–54

    CAS  Google Scholar 

  • Naureen Z, Rehman NU, Hussain H et al (2017) Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01477

    Article  PubMed  PubMed Central  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    CAS  PubMed  Google Scholar 

  • Noori F, Etesami H, Najafi Zarini H et al (2018) Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicol Environ Saf 162:129–138. https://doi.org/10.1016/j.ecoenv.2018.06.092

    Article  CAS  PubMed  Google Scholar 

  • Parikh L, Eskelson MJ, Adesemoye AO (2018) Relationship of in vitro and in planta screening: improving the selection process for biological control agents against Fusarium root rot in row crops. Arch Phytopathol Plant Prot 51:156–169

    Google Scholar 

  • Paul Raj D, Rhema L, Babyson S (2014) Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soils. IJISET 1:317–324

    Google Scholar 

  • Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    CAS  PubMed  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. CRC Crit Rev Plant Sci 34:17–42. https://doi.org/10.1080/07352689.2014.897899

    Article  Google Scholar 

  • Pérez-Fernández M, Alexander V (2017) Enhanced plant performance in Cicer arietinum L. due to the addition of a combination of plant growth-promoting bacteria. Agriculture 7:40

    Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    PubMed  Google Scholar 

  • Pham VTK, Rediers H, Ghequire MGK et al (2017) The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 199:513–517

    CAS  PubMed  Google Scholar 

  • Sahu B, Singh J, Shankar G, Pradhan A (2018) Pseudomonas fluorescens PGPR bacteria as well as biocontrol agent: a review. IJCS 6:1–7

    Google Scholar 

  • Saïdi S, Chebil S, Gtari M, Mhamdi R (2013) Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J Microbiol Biotechnol 29:1099–1106. https://doi.org/10.1007/s11274-013-1278-4

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55:74–81

    CAS  PubMed  Google Scholar 

  • Saleem AR, Brunetti C, Khalid A et al (2018) Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS One 13:e0191218

    PubMed  PubMed Central  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  PubMed  Google Scholar 

  • Shrivastava UP, Kumar A (2013) Characterization and optimization of 1-aminocyclopropane-1-carboxylate deaminase (accd) activity in different rhizospheric pgpr along with Microbacterium sp. strain ECI-12A. Shrivastava UP Kumar A 1:11–15

    CAS  Google Scholar 

  • Smyth EM, McCarthy J, Nevin R et al (2011) In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J Appl Microbiol 111:683–692. https://doi.org/10.1111/j.1365-2672.2011.05079.x

    Article  CAS  PubMed  Google Scholar 

  • Soussou S, Brunel B, Pervent M et al (2017) Rhizobacterial Pseudomonas spp. strains harbouring acdS gene could enhance metallicolous legume nodulation in Zn/Pb/Cd mine tailings. Water Air Soil Pollut 228:142

    Google Scholar 

  • Stefan M, Munteanu N, Stoleru V et al (2013) Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci Hortic (Amsterdam) 151:22–29

    Google Scholar 

  • Su F, Gilard F, Guérard F et al (2016) Spatio-temporal responses of Arabidopsis leaves in photosynthetic performance and metabolite contents to Burkholderia phytofirmans PsJN. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00403

    Article  PubMed  PubMed Central  Google Scholar 

  • Tariq M, Noman M, Ahmed T et al (2017) Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. J Plant Sci Phytopathol 1:38–43

    Google Scholar 

  • Trujillo ME, Willems A, Abril A et al (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Env Microbiol 71:1318–1327. https://doi.org/10.1128/AEM.71.3.1318-1327.2005

    Article  CAS  Google Scholar 

  • Velázquez E, Valverde A, Rivas R et al (2010) Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium. Antonie Van Leeuwenhoek 97:363–376

    PubMed  Google Scholar 

  • Velázquez E, Carro L, Flores-Félix JD et al (2017) The legume nodule microbiome: a source of plant growth-promoting bacteria. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer Singapore, Singapore, pp 41–70

    Google Scholar 

  • Vincent JM (1970) The cultivation, isolation and maintenance of rhizobia. A man pract study root-nodule bact. IBP Handbk 15 Oxford and Edinburgh: Blackwell Scientific Publications, pp 1–13

    Google Scholar 

  • Walia A, Guleria S, Chauhan A, Mehta P (2017) Endophytic bacteria: role in phosphate solubilization. In: Maheshwari DK, Annapurna K (eds) Endophytes: crop productivity and protection, vol 2. Springer International Publishing, Cham, pp 61–93

    Google Scholar 

  • Wigley K, Moot D, Wakelin SA et al (2017) Diverse bacterial taxa inhabit root nodules of lucerne (Medicago sativa L.) in New Zealand pastoral soils. Plant Soil 420:253–262. https://doi.org/10.1007/s11104-017-3395-6

    Article  CAS  Google Scholar 

  • Wolko B, Clements JC, Naganowska B et al (2011) Lupinus. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg, pp 153–206

    Google Scholar 

  • Xiao X, Chen W, Zong L et al (2017) Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol Ecol 26:1641–1651

    CAS  PubMed  Google Scholar 

  • Yaoyao E, Yuan J, Yang F et al (2017) PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression. AMB Express 7:104

    Google Scholar 

  • Yarzábal LA, Monserrate L, Buela L, Chica E (2018) Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biol 10:10. https://doi.org/10.1007/s00300-018-2374-6 (LB—Yarzábal2018)

    Article  Google Scholar 

  • Zhang B, Du N, Li Y et al (2018) Distinct biogeographic patterns of rhizobia and non-rhizobial endophytes associated with soybean nodules across China. Sci Total Environ 643:569–578. https://doi.org/10.1016/j.scitotenv.2018.06.240

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Xu Y, Lai X (2018) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 49:269–278

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre of Biotechnology of Borj Cedria and the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darine Trabelsi.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferchichi, N., Toukabri, W., Boularess, M. et al. Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch Microbiol 201, 1333–1349 (2019). https://doi.org/10.1007/s00203-019-01702-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01702-3

Keywords

Navigation