Archives of Microbiology

, Volume 201, Issue 10, pp 1415–1425 | Cite as

Comparative analysis of Aliivibrio logei luxR1 and luxR2 genes regulation in Escherichia coli cells

  • Olga E. Melkina
  • Ignatiy I. Goryanin
  • Sergey V. Bazhenov
  • Ilya V. Manukhov
  • Gennadii B. ZavilgelskyEmail author
Original Paper


Regulation of Aliivibrio logei luxR1 and luxR2 genes was evaluated in Escherichia coli cells with use of transcriptional fusions of luxR1 and luxR2 promoter/operator regions with the Photorhabdus luminescens luxCDABE reporter gene cassette. Expression of the luxR1 and luxR2 genes was shown to largely depend on the CRP as activator. The hns::kan mutation increases the expression of luxR2 gene by two to three orders of magnitude and luxR1 gene by two to threefold. The LuxR1 and LuxR2 proteins in the presence of autoinducer (N-acyl homoserine lactone, AI) separately as well as together considerably enhanced the transcription of the luxR2 gene. In contrast, the transcription of luxR1 gene decreases depending on AI concentration in the presence of the luxR1 and luxR2 genes combination. It was identified that the promoter region of luxR2 gene consists of two promoters: Pcrp is located downstream of the crp box and Plux-box is located between the crp box and the lux box.


Quorum sensing Aliivibrio logei luxR gene Transcriptional regulation Histone-like protein H-NS CRP 



This work was supported by the Russian Foundation for Basic Research, projects 16-04-0116016-04-00955 and 14-04-00388, and the Program of the Presidium of the Russian Academy of Sciences “Molecular and Cell Biology”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

203_2019_1691_MOESM1_ESM.doc (374 kb)
Supplementary material 1 (DOC 373 kb)


  1. Ali SS, Xia B, Liu J, Navarre WW (2012) Silencing of foreign DNA in bacteria. Curr Opin Microbiol 15:175–181. CrossRefPubMedGoogle Scholar
  2. Antunes LCM, Ferreira RBR, Lostroh CP, Greenberg EP (2007) A mutational analysis defines Vibrio fischeri LuxR binding sites. J Bacteriol 190:4392–4397. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Azam TA, Ishichama A (1999) Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 274:33105–33113. CrossRefPubMedGoogle Scholar
  4. Bazhenov SV, Khrulnova SA, Konopleva MN, Manukhov IV (2019) Seasonal changes in luminescent intestinal microflora of the fish inhabiting the Bering and Okhotsk seas. FEMS Microbiol Lett 366:fnz040. CrossRefPubMedGoogle Scholar
  5. Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S (2007) H-NS cooperative binding to high- affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 14:441–448. CrossRefPubMedGoogle Scholar
  6. Busby S, Ebright RH (1999) Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199–213. CrossRefPubMedGoogle Scholar
  7. Devine JH, Shadel GS, Baldwin TO (1989) Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc Natl Acad Sci USA 86:5688–5692CrossRefGoogle Scholar
  8. Dorman CJ (2007) H-NS, the genome sentinel. Nat Rev Microbiol 5:157–161. CrossRefPubMedGoogle Scholar
  9. Dunlap PV, Greenberg EP (1988) Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-LuxR protein regulatory circuit. J Bacteriol 170:4040–4046CrossRefGoogle Scholar
  10. Egland KA, Greenberg EP (1999) Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Mol Microbiol 31:1197–1204. CrossRefPubMedGoogle Scholar
  11. Fidopiastis PM, Miyamoto CM, Jobling MG, Edward A, Meighen EA, Ruby EG (2002) LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol Microbiol 45(1):131–143. CrossRefPubMedGoogle Scholar
  12. Fomenko D, Veselowskii A, Khmel IA (2001) Regulation of microcin C51 operon expression: the role of global regulators of transcription. Res Microbiol 152:469–479. CrossRefPubMedGoogle Scholar
  13. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275CrossRefGoogle Scholar
  14. Fuqua WC, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum sensing transcriptional regulators. Annu Rev Microbiol 50:727–751. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guyer MS, Reed RE, Steitz T, Low KB (1981) Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spr Harb Symp Quant Biol 45:135–140CrossRefGoogle Scholar
  16. Hansen H, Purohit AA, Leiros H-KS, Johansen JA, Kellermann SJ, Bjelland AM, Willassen NP (2015) The autoinducer synthases LuxI and AinS are responsible for temperature-dependent AHL production in the fish pathogen Aliivibrio salmonicida. BMC Microbiol 15:69–82. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Khrulnova SA, Manukhov IV, Zarubina AP, Zavilgelsky GB (2010) Aliivibrio logei KCh1 (Kamchatka isolate): biochemical and bioluminescence characteristics and cloning of the lux operon. Microbiology 79(3):349–355CrossRefGoogle Scholar
  18. Khrulnova SA, Manukhov IV, Zavil’gel’skii GB (2011) “Quorum sensing” regulation and the structure of lux the operon in marine bacteria Aliivibrio logei. Russ J Genet 47(12):1415–1421CrossRefGoogle Scholar
  19. Khrulnova SA, Maryshev IV, Kulikovsky AP, Manukhov IV, Zavilgelsky GB (2012) Comparative analysis of the “Quorum Sensing” system in psychrophilic Aliivibrio logei and mesophilic Aliivibrio fischeri marine luminescent bacteria. Biol Membr 29(5):362–366Google Scholar
  20. Khrulnova SA, Baranova A, Bazhenov SV, Goryanin II, Konopleva MN, Maryshev IV, Salykhova AI, Vasilyeva AV, Manukhov IV, Zavilgelsky GB (2016) Lux-operon of the marine psychrophilic bacteria Aliivibrio logei: a comparative analysis of the LuxR1/LuxR2 regulatory activity in Escherichia coli cells. Microbiology 162:717–724. CrossRefGoogle Scholar
  21. Konopleva MN, Khrulnova SA, Baranova A, Ekimov LV, Bazhenov SV, Goryanin II, Manukhov IV (2016) A combination of luxR1 and luxR2 genes activates Pr-promoters of psychrophilic A. logei lux-operon independently of chaperonin GroEL/ES and protease Lon at high concentrations of autoinducer. Biochem Biophys Res Commun. 473(4):1158–1162. CrossRefPubMedGoogle Scholar
  22. Li Z, Nair SK (2012) Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci 21:1403–1417. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lyell NL, Dunn AK, Bose JL, Stabb EV (2010) Bright mutants of Vibrio fischeri ES114 reveal conditions and regulators that control bioluminescence and expression of the lux operon. J Bacteriol 192:5103–5114CrossRefGoogle Scholar
  24. Manukhov IV, Khrul’nova SA, Baranova A, Zavilgelsky GB (2011) Comparative analysis of the lux operons in Aliivibrio logei Kch1 (a Kamchatka isolate) and Aliivibrio salmonicida. J Bacteriol 193:3998–4001. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol 34:1–67CrossRefGoogle Scholar
  26. Melkina OE, Goryanin II, Zavilgelsky GB (2017) Histone-like protein H-NS as a negative regulator of Quorum Sensing systems in Gram-negative bacteria. Russ J Genet 53:187–194. CrossRefGoogle Scholar
  27. Nelson EJ, Tunsje HS, Fidoplastis PM, Serum H, Ruby EG (2007) A novel lux operon in the cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl Environ Microbiol 73:1825–1833. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Noom MC, Navarre WW, Oshima T, Wulte GJ, Dame RT (2007) H-NS promotes looped domain formation in the bacterial chromosome. Curr Biol 17:R913–R914. CrossRefPubMedGoogle Scholar
  29. Owen-Hughes TA, Pavitt GD, Santos DS, Sidebotham JM, Hulton CS, Hinton JC, Higgins CF (1992) The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell 71:255–265. CrossRefPubMedGoogle Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  31. Shadel GS, Baldwin TO (1991) The Vibrio fischeri LuxR protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene. J Bacteriol 173(2):568–574CrossRefGoogle Scholar
  32. Ueguchi C, Mizuno T (1993) The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor. EMBO J 12:1039–1046. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ulitzur S, Matin A, Fraley C, Meighen E (1997) H-NS protein represses transcription of the lux systems of Vibrio fischeri and other luminous bacteria cloned into Escherichia coli. Curr Microbiol 35:336–342CrossRefGoogle Scholar
  34. Van Dyk TK, Rosson RA (1998) Photorhabdus luminescens luxCDABE promoter probe vectors. In: LaRosse RA (ed) Methods in molecular biology. Humana Press Inc, Totowa, pp 85–95. CrossRefGoogle Scholar
  35. Waters C, Bassler B (2005) Quorum Sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Olga E. Melkina
    • 1
  • Ignatiy I. Goryanin
    • 1
  • Sergey V. Bazhenov
    • 1
    • 2
  • Ilya V. Manukhov
    • 1
    • 2
  • Gennadii B. Zavilgelsky
    • 1
    Email author
  1. 1.State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Laboratory of Molecular GeneticsMoscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations