Advertisement

Archives of Microbiology

, Volume 201, Issue 7, pp 951–967 | Cite as

A combined approach of 16S rRNA and a functional marker gene, soxB to reveal the diversity of sulphur-oxidising bacteria in thermal springs

  • Y. D. JafferEmail author
  • C. S. Purushothaman
  • H. Sanath Kumar
  • A. B. Irfan
  • P. Gireesh-Babu
  • P. A. Ganie
  • R. A. H. Bhat
  • A. Vennila
Original Paper

Abstract

With the advent of new molecular tools, new taxa of sulphur-oxidising bacteria (SOB) in diverse environments are being discovered. However, there is a significant gap of knowledge about the ecology and diversity of SOB in thermal springs. Here, the species diversity and phylogenetic affiliations of SOB were investigated using 16S rRNA and functional gene marker, soxB in thermal springs of Thane district of Maharashtra, India. Most SOB detected by 16S rDNA sequences belong to different operational taxonomic units (OTU’s): Firmicutes, α-, β-, γ-Proteobacteria and Actinobacteria with the dominance of first class. However, the soxB gene clone library sequences had shown affiliation with the β-, γ- and α-Proteobacteria. β-Proteobacteria-related sequences were dominant, with 53.3% clones belonging to genus Hydrogenophaga. The thiosulphate oxidation assay carried out for different isolates having distinct identity showed the mean sulphate-sulphur production from 117.86 ± 0.50 to 218.82 ± 2.56 mg SO4-S l−1 after 9 days of incubation. Also, sulphur oxidation by the genus Nitratireductor, Caldimonas, Geobacillus, Paenibacillus, Brevibacillus, Tristrella and Chelatococcus has been reported for the first time that reveals ecological widening over which thiotrophs are distributed.

Keywords

Sulphur-oxidising bacteria Thermal springs Operational taxonomic units soxB gene 16s rRNA, functional gene marker 

Notes

Acknowledgements

The authors are grateful to Director and Vice-Chancellor, ICAR-Central Institute of Fisheries Education, Mumbai, India for providing support and necessary facilities to carry out this experiment. The first author would like to thank K. Rateesh, P. Priti, K. Radhika, A. Barman and R. Vinothkumar for their help at different stages of this research work.

Funding

The research work was funded by ICAR-Central Institute of Fisheries Education, Mumbai, India.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.

References

  1. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 25:175–243PubMedCrossRefGoogle Scholar
  2. Aguilar JRP, Cabriales JJP, Vega MM (2008) Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. Int J Phytoremediation 10(5):359–370CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  4. American Public Health Association, APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, New YorkGoogle Scholar
  5. Aragno M (1992) The mesophilic hydrogen-oxidizing (Knallgas) bacteria. The Prokaryotes, 2nd ed, A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, pp 344–384Google Scholar
  6. Aragno M, Schlegel HG (1992) The mesophilic hydrogen-oxidizing (Knallgas) bacteria. In: Balows A, Truper H, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. Springer, New York, pp 3917–3933CrossRefGoogle Scholar
  7. Atlas RM (2010) Handbook of microbiological media. CRC Press, Ann ArborGoogle Scholar
  8. Bohorquez LC, Delgado-Serrano L, López G, Osorio-Forero C, Klepac-Ceraj V, Kolter R, Junca H, Baena S, Zambrano MM (2012) In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microb Ecol 63:103–115PubMedCrossRefGoogle Scholar
  9. Cha JM, Cha WS, Lee JH (1999) Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochem 34(6–7):659–665Google Scholar
  10. Chaudhuri B, Chowdhury T, Chattopadhyay B (2017) Comparative analysis of microbial diversity in two hot springs of Bakreshwar, West Bengal, India. Genom Data 30(12):122–129CrossRefGoogle Scholar
  11. Chung BS, Ryu SH, Park M, Jeon Y, Chung YR, Jeon CO (2007) Hydrogenophaga caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57(5):1126–1130PubMedCrossRefGoogle Scholar
  12. Ding J, Zhang R, Yu Y, Jin D, Liang C, Yi Y, Zhu W, Xia J (2011) A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of tengchong, Yunnan, China. Brazilian J Microbiol 42(2):514–525CrossRefGoogle Scholar
  13. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67(7):2873–2882PubMedPubMedCentralCrossRefGoogle Scholar
  14. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8(3):253–259PubMedCrossRefGoogle Scholar
  15. George J, Purushothaman CS, Shouche YS (2008) Isolation and characterization of sulphate-reducing bacteria Desulfovibrio vulgaris from Vajreshwari thermal springs in Maharashtra, India. World J Microbiol Biotechnol 24(5):681–685CrossRefGoogle Scholar
  16. Ghelani A, Patel R, Mangrola A, Dudhagara P (2005) Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India. Gen Data 30(4):54–56Google Scholar
  17. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbial Rev 33(6):999–1043CrossRefGoogle Scholar
  18. Ghosh W, George A, Agarwal A, Raj P, Alam M, Pyne P, Gupta SK (2011) Whole-genome shotgun sequencing of the sulfur-oxidizing chemoautotroph Tetrathiobacter kashmirensis. J Bacteriol 193(19):5553–5554PubMedPubMedCentralCrossRefGoogle Scholar
  19. Graff A, Stubner S (2003) Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Syst Appl Microbiol 26(3):445–452PubMedCrossRefGoogle Scholar
  20. Harrison Jr, Arthur P (1984) The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Ann rev microbio 38(1): 265–292CrossRefGoogle Scholar
  21. Hayes MK, Taylor GT, Astor Y, Scranton MI (2006) Vertical distributions of thiosulfate and sulfite in the Cariaco Basin. Limnol Oceanogr 51(1):280–287CrossRefGoogle Scholar
  22. Hensen D, Sperling D, Trüper HG, Brune DC, Dahl C (2006) Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol 62(3):794–810PubMedCrossRefGoogle Scholar
  23. Hobel CF, Marteinsson VT, Hreggvidsson GO, Kristjánsson JK (2005) Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. Appl Environ Microbiol 71(5):2771–2776PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hügler M, Gärtner A, Imhoff JF (2010) Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 73(3):526–537PubMedGoogle Scholar
  25. Hurst CJ, Crawford RL, Garland JL, Lipson DA, editors (2007) Manual of environmental microbiology. American Society for Microbiology PressGoogle Scholar
  26. Jannasch HW, Wirsen CO, Nelson DC, Robertson LA (1985) Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 35(4):422–424Google Scholar
  27. Jukes TH, Cantor CR (1969) Evolution of protein molecules. Mammal Protein Metabol 3(21):132Google Scholar
  28. Kelly DP, Harrison AH (1989) Genus Thiobacillus. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1842–1858Google Scholar
  29. Kelly DP, Wood AP (2000) Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Bacteriol 50(2):547–550CrossRefGoogle Scholar
  30. Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoe 71(1–2):95–107CrossRefGoogle Scholar
  31. Kolmert Å, Wikström P, Hallberg KB (2000) A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol Methods 41(3):179–184PubMedCrossRefGoogle Scholar
  32. Kreye WC, King PH, Randall CW (1974) Kinetic parameters and operation problems in the biological oxidation of high thiosulfate industrial wastewaters. Proc. 29th Indust. Waste Conf., Purdue University, West Lafayette, Indiana, pp. 410-422Google Scholar
  33. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–175Google Scholar
  35. Lenk S, Moraru C, Hahnke S, Arnds J, Richter M, Kube M, Reinhardt R, Brinkhoff T, Harder J, Amann R, Mußmann M (2012) Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J 6(12):2178–2187PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lin SY, Hameed A, Wen CZ, Hsu YH, Liu YC, Lai WA, Young CC (2017) Hydrogenophaga aquatica sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 67(10):3716–3721PubMedCrossRefGoogle Scholar
  37. Luo JF, Lin WT, Guo Y (2011) Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Appl Microbiol Biotechnol 90(2):769–778PubMedCrossRefGoogle Scholar
  38. Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76(1–3):157–171PubMedCrossRefGoogle Scholar
  39. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M (2016) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203PubMedPubMedCentralCrossRefGoogle Scholar
  40. Meyer B, Kuever J (2007) Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73(23):7664–7679PubMedPubMedCentralCrossRefGoogle Scholar
  41. Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9(12):2957–2977PubMedCrossRefGoogle Scholar
  42. Pandey BD, Natarajan KA, editors (2015) Microbiology for minerals, metals, materials and the environment. CRC PressGoogle Scholar
  43. Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, Whyte LG (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic. Appl Environ Microbiol 74(22):6898–6907PubMedPubMedCentralCrossRefGoogle Scholar
  44. Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the sox B gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197(2):171–178PubMedCrossRefGoogle Scholar
  45. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9(4):e93827PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ratzke C, Denk J, Gore J (2018) Ecological suicide in microbes. Nat Ecol Evol 2(5):867PubMedPubMedCentralCrossRefGoogle Scholar
  47. Reddy DV, Nagabhushanam P, Ramesh G (2013) Turnover time of Tural and Rajvadi hot spring waters, Maharashtra, India. Curr Sci 25:1419–1424Google Scholar
  48. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  49. Sakano Y, Kerkhof L (1998) Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools. App Environ Microbiol 64(12):4877–4882Google Scholar
  50. Sarolkar PB (2005) Geochemical characters of hot springs of West Coast, Maharashtra State, India. In: Proceedings World Geothermal Congress, Antalaya, Turkey, 24-29Google Scholar
  51. Sattley WM, Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. App Environ Microbiol 72(8):5562–5568CrossRefGoogle Scholar
  52. Shanker R (1987) Status of geothermal exploration in Maharashtra and Madhya Pradesh (central region). Rec Geol Surv India 115(6):7–29Google Scholar
  53. Sorokin DY, Tourova TP, Lysenko AM, Kuenen JG (2001) Microbial thiocyanate utilization under highly alkaline conditions. App Environ Microbiol 67(2):528–538CrossRefGoogle Scholar
  54. Starkey RL (1934) Cultivation of organisms concerned in the oxidation of thiosulfate. J Bacteriol 28(4):365PubMedPubMedCentralGoogle Scholar
  55. Starkey RL (1935a) (i) Isolation of some bacteria which oxidize thiosulfate. Soil Sci 39:197–219CrossRefGoogle Scholar
  56. Starkey RL (1935b) (ii) Products of the oxidation of thiosulfate by bacteria in mineral media. J Gen Physiol 18(3):325–349PubMedPubMedCentralCrossRefGoogle Scholar
  57. Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, Horikoshi K (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen-and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int. J Syst Evol Microbiol 56(8):1725–1733PubMedCrossRefGoogle Scholar
  58. Tamazawa S, Takasaki K, Tamaki H, Kamagata Y, Hanada S (2012) Metagenomic and biochemical characterizations of sulfur oxidation metabolism in uncultured large sausage-shaped bacterium in hot spring microbial mats. PLoS ONE 7(11):e49793PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44(1):73–94CrossRefGoogle Scholar
  60. Tourova TP, Slobodova NV, Bumazhkin BK, Kolganova TV, Muyzer G, Sorokin DY (2013) Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using sox B as a functional molecular marker. FEMS Microbial Ecol 84(2):280–289CrossRefGoogle Scholar
  61. Trautwein K (1921) Centbl. Bakt. (II), 53:513–548Google Scholar
  62. Tuttle JH, Jannasch HW (1972) Occurrence and types of thiobacillus-like bacteria in the sea. Limnol Oceanogr 17(4):532–543CrossRefGoogle Scholar
  63. Tuttle JH, Jannasch HW (1973) Sulfide and thiosulfate-oxidizing bacteria in anoxic marine basins. Mar Biol 20(1):64–70CrossRefGoogle Scholar
  64. Tuttle JH, Holmes PE, Jannasch HW (1974) Growth rate stimulation of marine pseudomonads by thiosulfate. Arch Microbial 99(1):1–4CrossRefGoogle Scholar
  65. Vitolins MI, Swaby RJ (1969) Activity of sulphur-oxidizing microorganisms in some Australian soils. Soil Res 7(2):171–183CrossRefGoogle Scholar
  66. Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology. vol. I. Williams and Wilkins, MD, USA, p 663–679Google Scholar
  67. Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, De Ley J (1989) Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov.(formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Evol Microbiol 39(3):319–333Google Scholar
  68. Wood AP, Kelly DP (1988) Isolation and physiological characterisation of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile. Arch Microbio 149(4):339–343CrossRefGoogle Scholar
  69. Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156(4):277–280CrossRefGoogle Scholar
  70. Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, Xun L (2017) Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J 11(12):2754PubMedPubMedCentralCrossRefGoogle Scholar
  71. Yohandini H (2015) Isolation and phylogenetic analysis of thermophile community within tanjung sakti hot spring, South Sumatera, Indonesia. HAYATI J Biosci 22(3):143–148CrossRefGoogle Scholar
  72. Zhang Y, Wang X, Zhen Y, Mi T, He H, Yu Z (2017) Microbial diversity and community structure of sulfate-reducing and sulfur-oxidizing bacteria in sediment cores from the east China Sea. Front Microbiol 8:2133PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Irrigation and Drainage EngineeringICAR-Central Soil Salinity Research InstituteKarnalIndia
  2. 2.ICAR-Central Marine Fisheries Research InstituteKochiIndia
  3. 3.Fisheries Resources, Harvest and Post Harvest DivisionICAR-Central Institute of Fisheries EducationMumbaiIndia
  4. 4.College of Fisheries ScienceBirsa Agricultural UniversityRanchiIndia
  5. 5.Fish Genetics and Biotechnology DivisionICAR-Central Institute of Fisheries EducationMumbaiIndia
  6. 6.Fisheries Resource ManagementICAR-Directorate of Cold Water Fisheries ResearchBhimtalIndia
  7. 7.Fish PathologyICAR-Directorate of Cold Water Fisheries ResearchBhimtalIndia
  8. 8.Division of Crop ProductionICAR-Sugarcane Breeding InstituteCoimbatoreIndia

Personalised recommendations