Advertisement

Pantocin A, a peptide-derived antibiotic involved in biological control by plant-associated Pantoea species

  • Theo H. M. SmitsEmail author
  • Brion Duffy
  • Jochen Blom
  • Carol A. Ishimaru
  • Virginia O. Stockwell
Mini-Review
  • 40 Downloads

Abstract

The genus Pantoea contains a broad range of plant-associated bacteria, including some economically important plant pathogens as well as some beneficial members effective as biological control agents of plant pathogens. The most well-characterized representatives of biological control agents from this genus generally produce one or more antimicrobial compounds adding to biocontrol efficacy. Some Pantoea species evaluated as biocontrol agents for fire blight disease of apple and pear produce a histidine-reversible antibiotic. Three commonly studied histidine-reversible antibiotics produced by Pantoea spp. are herbicolin O, MccEh252, and pantocin A. Pantocin A is a novel ribosomally encoded and post-translationally modified peptide natural product. Here, we review the current knowledge on the chemistry, genetics, biosynthesis, and incidence and environmental relevance of pantocin A and related histidine-reversible antibiotics produced by Pantoea.

Keywords

Pantoea agglomerans Pantoea vagans Herbicolin O MccEh252 Histidine-reversible Biocontrol Fire blight Erwinia amylovora 

Notes

Acknowledgements

T.H.M.S. was supported by the ZHAW School of Life Sciences and Facility Management. V.O.S. was supported in part by the United States Department of Agriculture, Agricultural Research Service and the Agriculture and Food Research Initiative Competitive Grants Program Grant No. 2012-67013-19392 from the USDA National Institute of Food and Agriculture.

References

  1. Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, Currie CR, Raffa KF (2011) Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J 5:1323–1331CrossRefGoogle Scholar
  2. Anderson LM, Stockwell VO, Loper JE (2004) An extracellular protease of Pseudomonas fluorescens inactivates antibiotics of Pantoea agglomerans. Phytopathology 94:1228–1234CrossRefGoogle Scholar
  3. Berg G, Grosch R, Scherwinski K (2007) Risikofolgeabschätzung für den Einsatz mikrobieller Antagonisten: gibt es Effekte auf Nichtzielorganismen? Gesunde Pflanzen 59:107–117CrossRefGoogle Scholar
  4. Brady SF, Wright SA, Lee JC, Sutton AE, Zumoff CH, Wodzinski RS, Beer SV, Clardy J (1999) Pantocin B, an antibiotic from Erwinia herbicola discovered by heterologous expression of cloned genes. J Am Chem Soc 121:11912–11913CrossRefGoogle Scholar
  5. Brady CL, Venter SN, Cleenwerck I, Engelbeen K, Vancanneyt M, Swings J, Coutinho TA (2009) Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int J Syst Evol Microbiol 59:2339–2345CrossRefGoogle Scholar
  6. Brady CL, Cleenwerck I, Venter SN, Engelbeen K, De Vos P, Coutinho TA (2010) Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int J Syst Evol Microbiol 60:2430–2440CrossRefGoogle Scholar
  7. Brady C, Cleenwerck I, van der Westhuizen L, Venter SN, Coutinho TA, De Vos P (2012) Pantoea rodasii sp. nov., Pantoea rwandensis sp. nov. and Pantoea wallisii sp. nov., three novel Pantoea species isolated from Eucalyptus. Int J Syst Evol Microbiol 62:1457–1464CrossRefGoogle Scholar
  8. Braun A, Sands DC, Jacobsen BJ (1998) Mechanisms in the biological control of Pseudomonas syringae pv. syringae by Pantoea agglomerans. IOBC Bull 21:7–12Google Scholar
  9. Braun-Kiewnick A, Lehmann A, Rezzonico F, Wend C, Smits THM, Duffy B (2012) Development of species-, strain- and antibiotic biosynthesis-specific quantitative PCR assays for Pantoea agglomerans as tools for biocontrol monitoring. J Microbiol Methods 90:315–320CrossRefGoogle Scholar
  10. Davis LA, Ishimaru C (1993) Cloning and expression of herbicolin O biosynthesis genes in Escherichia coli. Phytopathology 83:1339Google Scholar
  11. Dawlaty J, Zhang X, Fischbach MA, Clardy J (2010) Dapdiamides, tripeptide antibiotics formed by unconventional amide ligases. J Nat Prod 73:441–446CrossRefGoogle Scholar
  12. De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits THM (2011) Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genom 12:576CrossRefGoogle Scholar
  13. De Maayer P, Chan WY, Blom J, Venter SN, Duffy B, Smits THM, Coutinho TA (2012) The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genom 13:625CrossRefGoogle Scholar
  14. El-Goorani MA, Beer SV (1991) Antibiotic production of Erwinia herbicola and their interactions with Erwinia amylovora in immature pear fruits. Phytopathology 81:121Google Scholar
  15. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345CrossRefGoogle Scholar
  16. Ghodge SV, Biernat KA, Bassett SJ, Redinbo MR, Bowers AA (2016) Post-translational Claisen condensation and decarboxylation en route to the bicyclic core of pantocin A. J Am Chem Soc 138:5487–5490CrossRefGoogle Scholar
  17. Giddens SR, Feng Y, Mahanty HK (2002) Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Mol Microbiol 45:769–783CrossRefGoogle Scholar
  18. Ishimaru CA, Klos EJ, Brubaker RR (1988) Multiple antibiotic production by Erwinia herbicola. Phytopathology 78:746–750CrossRefGoogle Scholar
  19. Ishimaru CA, Lansdell TA, Clardy J, Duffy B, Smits THM (2017) The histidine-reversible antibiotic herbicolin O produced by Pantoea vagans C9-1 is pantocin A. J Plant Pathol 99(special issue):91–97Google Scholar
  20. Jin M, Liu L, Wright SAI, Beer SV, Clardy J (2003a) Structural and functional analysis of pantocin A: an antibiotic from Pantoea agglomerans discovered by heterologous expression of cloned genes. Angew Chem Int Ed 42:2898–2901CrossRefGoogle Scholar
  21. Jin M, Wright SAI, Beer SV, Clardy J (2003b) The biosynthetic gene cluster of pantocin A provides insights into biosynthesis and a tool for screening. Angew Chem Int Ed 42:2902–2905CrossRefGoogle Scholar
  22. Johnson KB, Stockwell VO (1998) Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol 36:227–248CrossRefGoogle Scholar
  23. Johnson KB, Stockwell VO, Sawyer TL, Sugar D (2000) Assessment of environmental factors influencing growth and spread of Pantoea agglomerans on and among blossoms of pear and apple. Phytopathology 90:1285–1294CrossRefGoogle Scholar
  24. Johnson KB, Stockwell VO, Sawyer TL (2004) Adaptation of fire blight forecasting to optimize the use of biological controls. Plant Dis 88:41–48CrossRefGoogle Scholar
  25. Kamber T, Lansdell TA, Stockwell VO, Ishimaru CA, Smits THM, Duffy B (2012a) Characterization of the biosynthetic operon for the antibacterial peptide herbicolin in Pantoea vagans biocontrol strain C9-1 and incidence in Pantoea species. Appl Environ Microbiol 78:4412–4419CrossRefGoogle Scholar
  26. Kamber T, Smits THM, Rezzonico F, Duffy B (2012b) Genomics and current genetic understanding of Erwinia amylovora and the fire blight antagonist Pantoea vagans. Trees Struct Funct 26:227–238CrossRefGoogle Scholar
  27. Kearns LP, Mahanty HK (1998) Antibiotic production by Erwinia herbicola Eh1087: its role in inhibition of Erwinia amylovora and partial characterization of antibiotic biosynthesis genes. Appl Environ Microbiol 64:1837–1844Google Scholar
  28. Kempf H-J, Bauer PH, Schroth ML (1993) Herbicolin A associated with crown and roots of wheat after seed treatment with Erwinia herbicola B247. Phytopathology 90:1285–1294Google Scholar
  29. Klein JM, Wong P, Loper JE, Stockwell VO (2017) Nutritional environment influences transcription of a pantocin A biosynthesis gene in Pantoea vagans strain C9-1. J Plant Pathol 99(special issue):99–103Google Scholar
  30. Lansdell TA (2000) The genetics of herbicolin I and herbicolin O production in Pantoea agglomerans strain C9-1. In: Department of microbiology. Colorado State University, Fort Collins, p 66Google Scholar
  31. Lindh E, Kjaeldgaard P, Frederiksen W, Ursing J (1991) Phenotypical properties of Enterobacter agglomerans (Pantoea agglomerans) from human, animal and plant sources. APMIS 99:347–352CrossRefGoogle Scholar
  32. Malnoy M, Martens S, Norelli JL, Barny M-A, Sundin GW, Smits THM, Duffy B (2012) Fire blight: applied genomic insights of the pathogen and the host. Annu Rev Phytopathol 50:475–494CrossRefGoogle Scholar
  33. Matsuzawa T, Mori K, Kadowaki T, Shimada M, Tashiro K, Kuhara S, Inagawa H, Soma G-I, Takegawa K (2012) Genome sequence of Pantoea agglomerans IG1. J Bacteriol 194:1258–1259CrossRefGoogle Scholar
  34. Pillonetto M, Arend L, Faoro H, D’Espindula HRS, Blom J, Smits THM, Mira MT, Rezzonico F (2018) Emended description of the genus Phytobacter, its type species Phytobacter diazotrophicus (Zhang 2008) and description of Phytobacter ursingii sp. nov. Int J Syst Evol Microbiol 68:176–184CrossRefGoogle Scholar
  35. Pusey PL (2002) Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis 86:639–644CrossRefGoogle Scholar
  36. Pusey PL, Stockwell VO, Rudell DR (2008) Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. Phytopathology 98:1136–1143CrossRefGoogle Scholar
  37. Pusey PL, Stockwell VO, Reardon C, Smits THM, Duffy B (2011) Antibiosis by Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple blossom stigmas. Phytopathology 101:1234–1241CrossRefGoogle Scholar
  38. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424CrossRefGoogle Scholar
  39. Rezzonico F, Smits THM, Montesinos E, Frey JE, Duffy B (2009) Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 9:204CrossRefGoogle Scholar
  40. Rezzonico F, Vogel G, Duffy B, Tonolla M (2010) Whole cell MALDI-TOF mass spectrometry application for rapid identification and clustering analysis of Pantoea species. Appl Environ Microbiol 76:4497–4509CrossRefGoogle Scholar
  41. Smith DDN, Kirzinger MWB, Stavrinides J (2013) Draft genome sequence of the antibiotic-producing cystic fibrosis isolate Pantoea agglomerans Tx10. Genome Announc 1:e00904–e00913Google Scholar
  42. Smits THM, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA, Stockwell VO, Frey JE, Duffy B (2010) The genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J Bacteriol 192:6486–6487CrossRefGoogle Scholar
  43. Smits THM, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA, Frey JE, Stockwell VO, Duffy B (2011) Metabolic versatility and antibacterial metabolite biosynthesis are distinguishing genomic features of the fire blight antagonist Pantoea vagans C9-1. PLoS One 6:e22247CrossRefGoogle Scholar
  44. Smits THM, Rezzonico F, Blom J, Goesmann A, Abelli A, Kron Morelli R, Vanneste JL, Duffy B (2015) Draft genome of the commercial biocontrol strain Pantoea agglomerans P10c. Genome Announc 3:e01448–e01415Google Scholar
  45. Stockwell VO, Johnson KB, Loper JE (1996) Compatibility of bacterial antagonists of Erwinia amylovora with antibiotics used to control fire blight. Phytopathology 86:834–840CrossRefGoogle Scholar
  46. Stockwell VO, Johnson KB, Sugar D, Loper JE (2002) Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in orchards. Phytopathology 92:1202–1209CrossRefGoogle Scholar
  47. Stockwell VO, Johnson KB, Sugar D, Loper JE (2010) Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathology 100:1330–1339CrossRefGoogle Scholar
  48. Stockwell VO, Johnson KB, Sugar D, Loper JE (2011) Mechanistically compatible mixtures of bacterial antagonists improves biological control of fire blight of pear. Phytopathology 101:113–123CrossRefGoogle Scholar
  49. Vanneste JL, Yu J, Beer SV (1992) Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J Bacteriol 174:2785–2796CrossRefGoogle Scholar
  50. Vanneste JL, Cornish DA, Yu J, Voyle MD (2002a) P10c: a new biological control agent for control of fire blight which can be sprayed or distributed using honey bees. Acta Hortic 590:231–236CrossRefGoogle Scholar
  51. Vanneste JL, Cornish DA, Yu J, Voyle MD (2002b) The peptide antibiotic produced by Pantoea agglomerans Eh252 is a microcin. Acta Hortic 590:285–290CrossRefGoogle Scholar
  52. Vanneste JL, Yu J, Cornish DA (2008) Presence of genes homologous to those necessary for synthesis of microcin MccEh252 in strains of Pantoea agglomerans. Acta Hortic 793:391–396CrossRefGoogle Scholar
  53. Walterson AM, Smith DDN, Stavrinides J (2014) Identification of a Pantoea biosynthetic cluster that directs the synthesis of an antimicrobial natural product. PLoS One 9:e96208CrossRefGoogle Scholar
  54. Wilson M, Lindow SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60:4468–4477Google Scholar
  55. Wodzinski RS, Paulin J-P (1994) Frequency and diversity of antibiotic production by putative Erwinia herbicola strains. J Appl Bacteriol 76:603–607CrossRefGoogle Scholar
  56. Wodzinski RS, Umholtz TE, Rundle JR, Beer SV (1994) Mechanisms of inhibition of Erwinia amylovora by Erwinia herbicola in vitro and in vivo. J Appl Bacteriol 76:22–29CrossRefGoogle Scholar
  57. Wright SAI, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:284–292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource SciencesZürich University of Applied Sciences ZHAWWädenswilSwitzerland
  2. 2.Bioinformatics and Systems BiologyJustus-Liebig-UniversitätGiessenGermany
  3. 3.Department of Plant PathologyUniversity of MinnesotaSt. PaulUSA
  4. 4.United States Department of Agriculture, Agricultural Research Service, Horticultural Crops Research UnitCorvallisUSA

Personalised recommendations