Advertisement

Draft genome sequence of Lactobacillus plantarum C4 (CECT 9567), a potential probiotic strain isolated from kefir

  • Soumi De Montijo-Prieto
  • David J. Castro
  • Jose C. Reina
  • Maria Jimenez-Valera
  • Alfonso Ruiz-BravoEmail author
Short Communication

Abstract

Lactobacillus plantarum C4 (CECT 9567) was isolated from kefir and has been extensively studied because of its probiotic properties. Here we report the genome sequence of this strain. The genome consists of 3,221,350 bp, and contains 3058 CDSs with an average G + C content of 44.5%. The genome harbors genes encoding the AraC-family transcription regulator, the penicillin-binding protein Pbp2A, and the Na+/H+ antiporter NapA3, which have important roles in the survival of lactobacilli in the gastrointestinal tract. Also, the genome encodes the catalase KatE, NADH peroxidase and glutathione peroxidase, which enable anaerobic respiration, and a nitrate reductase complex, which enable anaerobic respiration. Additionally, genes encoding plantaricins and sactipeptides, and genes involved in the use of fructooligosaccharides and in the production of butyric acid were also identified. BLASTn analysis revealed that 91.4% of CDSs in C4 genome aligned with those of the reference strain L. plantarum WCFS1, with a mean identity of 98.96%. The genome information of L. plantarum C4 provides the basis for understanding the probiotic properties of C4 and to consider its use as a potential component of functional foods.

Keywords

Lactobacillus plantarum Genome sequence Probiotic properties Kefir 

Notes

Acknowledgements

This study was supported by the Research Groups BIO-201 funded by the Junta de Andalucia (Spain).

Compliance with ethical standards

Conflict of interest

All authors declared that they have no potential conflict of interest.

References

  1. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genom 12:402.  https://doi.org/10.1186/1471-2164-12-402 CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  3. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75.  https://doi.org/10.1186/1471-2164-9-75 CrossRefGoogle Scholar
  4. Bergillos-Meca T, Cabrera-Vique C, Artacho R, Moreno-Montoro M, Navarro-Alarcón M, Olalla M, Giménez R, Seiquer I, Ruiz-López MD (2015a) Does Lactobacillus plantarum or ultrafiltration process improve Ca, Mg, Zn and P bioavailability from fermented goats’ milk? Food Chem 187:314–321.  https://doi.org/10.1016/j.foodchem.2015.04.051 CrossRefGoogle Scholar
  5. Bergillos-Meca T, Costabile A, Walton G, Moreno-Montoro M, Ruiz-Bravo A, Ruiz-Lopez MD (2015b) In vitro evaluation of the fermentation properties and potential probiotic activity of Lactobacillus plantarum C4 in batch culture systems. LWT Food Sci Technol 60:420–426.  https://doi.org/10.1016/j.lwt.2014.08.006 CrossRefGoogle Scholar
  6. Botta C, Acquadro A, Greppi A, Barchi L, Bertolino M, Cocolin L, Rantsiou K (2017) Genomic assessment in Lactobacillus plantarum links the butyrogenic pathway with glutamine metabolism. Sci Rep 7:15975.  https://doi.org/10.1038/s41598-017-16186-8 CrossRefGoogle Scholar
  7. Brooijmans RJ, de Vos WM, Hugenholtz J (2009) Lactobacillus plantarum WCFS1 electron transport chains. Appl Environ Microbiol 75:3580–3585.  https://doi.org/10.1128/AEM.00147-09 CrossRefGoogle Scholar
  8. Bujalance C, Moreno E, Jimenez-Valera M, Ruiz-Bravo A (2007) A probiotic strain of Lactobacillus plantarum stimulates lymphocyte responses in immunologically intact and immunocompromised mice. Int J Food Microbiol 113:28–34.  https://doi.org/10.1016/j.ijfoodmicro.2006.07.014 CrossRefGoogle Scholar
  9. Bujalance C, Jimenez-Valera M, Moreno E, Ruiz-Lopez MD, Lasserrot A, Ruiz-Bravo A (2014) Lack of correlation between in vitro antibiosis and in vivo protection against enteropathogenic bacteria by probiotic lactobacilli. Res Microbiol 165:14–20.  https://doi.org/10.1016/j.resmic.2013.10.006 CrossRefGoogle Scholar
  10. De Montijo-Prieto S, Moreno E, Bergillos-Meca T, Lasserrot A, Ruiz-Lopez MD, Ruiz-Bravo A, Jimenez-Valera M (2015) A Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with Yersinia enterocolitica O9 and modulates immunity in mice. Res Microbiol 166:626–632.  https://doi.org/10.1016/j.resmic.2015.07.010 CrossRefGoogle Scholar
  11. Dobson A, Cotter PD, Ross RP, Hill (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6.  https://doi.org/10.1128/AEM.05576-11 CrossRefGoogle Scholar
  12. EFSA Panel on Biological Hazards (2016) Statement on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 4: suitability of taxonomic units notified to EFSA until March 2016. EFSA J 14:4522.  https://doi.org/10.2903/j.efsa.2016.4522 Google Scholar
  13. Fuentes S, Egert M, Jimenez-Valera M, Monteoliva-Sanchez M, Ruiz-Bravo A, Smidt H (2008a) A strain of Lactobacillus plantarum affects segmented filamentous bacteria in the intestine of immunosuppressed mice. FEMS Microbiol Ecol 63:65–72.  https://doi.org/10.1111/j.1574-6941.2007.00411.x CrossRefGoogle Scholar
  14. Fuentes S, Egert M, Jimenez-Valera M, Ramos-Cormenzana A, Ruiz-Bravo A, Smidt H, Monteoliva-Sanchez M (2008b) Administration of Lactobacillus casei and Lactobacillus plantarum affects the diversity of murine intestinal lactobacilli, but not the overall bacterial community structure. Res Microbiol 159:237–243.  https://doi.org/10.1016/j.resmic.2008.02.005 CrossRefGoogle Scholar
  15. Gobbetti M, Cagno RD, De Angelis M (2010) Functional microorganisms for functional food quality. Crit Rev Food Sci Nutr 50:716–727.  https://doi.org/10.1080/10408398.2010.499770 CrossRefGoogle Scholar
  16. Goh YJ, Lee JH, Hutkins RW (2007) Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195. Appl Environ Microbiol 73:5716–5724.  https://doi.org/10.1128/AEM.00805-07 CrossRefGoogle Scholar
  17. Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB, Kuhlman B, Almo SC, Bowers AA (2017) Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J Am Chem Soc 139:11734–11744.  https://doi.org/10.1021/jacs.7b01283 CrossRefGoogle Scholar
  18. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075.  https://doi.org/10.1093/bioinformatics/btt086 CrossRefGoogle Scholar
  19. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119.  https://doi.org/10.1111/j.1365-2036.2007.03562.x CrossRefGoogle Scholar
  20. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514.  https://doi.org/10.1038/nrgastro.2014.66 CrossRefGoogle Scholar
  21. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:286–293.  https://doi.org/10.1093/nar/gkv1248 CrossRefGoogle Scholar
  22. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 34:2115–2122.  https://doi.org/10.1093/molbev/msx148 CrossRefGoogle Scholar
  23. Ianniello RG, Zotta T, Matera A, Genovese F, Parente E, Ricciardi A (2016) Investigation of factors affecting aerobic and respiratory growth in the oxygen-tolerant strain Lactobacillus casei N87. PLoS One 11:0164065.  https://doi.org/10.1371/journal.pone.0164065 CrossRefGoogle Scholar
  24. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995.  https://doi.org/10.1073/pnas.0337704100 CrossRefGoogle Scholar
  25. Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, Gaudu P, Gruss A (2011) Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol 22:143–149.  https://doi.org/10.1016/j.copbio.2010.12.001 CrossRefGoogle Scholar
  26. Lukjancenko O, Ussery DW, Wassenaar TM (2012) Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol 63:651–673.  https://doi.org/10.1007/s00248-011-9948-y CrossRefGoogle Scholar
  27. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218.  https://doi.org/10.1016/S0022-2836(61)80047-8 CrossRefGoogle Scholar
  28. Moreno-Montoro M, Olalla-Herrera M, Rufian-Henares JA, Giménez-Martínez R, Miralles B, Bergillos-Meca T, Navarro-Alarcon M, Jauregi P (2017) Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food Funct 8:2783–2791.  https://doi.org/10.1039/c7fo00666g CrossRefGoogle Scholar
  29. Moreno-Montoro M, Jauregi P, Navarro-Alarcon M, Olalla-Herrera M, Giménez-Martínez R, Amigo L, Miralles B (2018a) Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks. Anal Bioanal Chem 410:3597–3606.  https://doi.org/10.1007/s00216-018-0983-0 CrossRefGoogle Scholar
  30. Moreno-Montoro M, Navarro-Alarcon M, Bergillos-Meca T, Giménez-Martínez R, Sanchez-Hernandez S, Olalla-Herrera M (2018b) Physicochemical, nutritional, and organoleptic characterization of a skimmed goat milk fermented with the probiotic strain Lactobacillus plantarum C4. Nutrients 10:E633.  https://doi.org/10.3390/nu10050633 CrossRefGoogle Scholar
  31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:206–214.  https://doi.org/10.1093/nar/gkt1226 CrossRefGoogle Scholar
  32. Papizadeh M, Rohani M, Nahrevanian H, Javadi A, Pourshafie MR (2017) Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microb Pathog 111:118–131.  https://doi.org/10.1016/j.micpath.2017.08.021 CrossRefGoogle Scholar
  33. Puertollano E, Puertollano MA, Cruz-Chamorro L, Alvarez de Cienfuegos G, Ruiz-Bravo A, de Pablo MA (2008) Orally administered Lactobacillus plantarum reduces pro-inflammatory interleukin secretion in sera from Listeria monocytogenes infected mice. Br J Nutr 99:819–825.  https://doi.org/10.1017/S0007114507832533 CrossRefGoogle Scholar
  34. Puertollano E, Puertollano MA, Cruz-Chamorro L, Alvarez de Cienfuegos G, Ruiz-Bravo A, de Pablo MA (2009) Effects of concentrated supernatants recovered from Lactobacillus plantarum on Escherichia coli growth and on the viability of a human promyelocytic cell line. Appl Microbiol 106:1194–1203.  https://doi.org/10.1111/j.1365-2672.2008.04086.x CrossRefGoogle Scholar
  35. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D (2017) Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob Proteins 9:111–122.  https://doi.org/10.1007/s12602-017-9264-z CrossRefGoogle Scholar
  36. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S.  https://doi.org/10.1016/0002-9343(91)90281-2 CrossRefGoogle Scholar
  37. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, Starrenburg MJ, Kleerebezem M, Molenaar D, van Hylckama Vlieg JE (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12:758–773.  https://doi.org/10.1111/j.1462-2920.2009.02119.x CrossRefGoogle Scholar
  38. Siezen RJ, Francke C, Renckens B, Boekhorst J, Wels M, Kleerebezem M, van Hijum SA (2012) Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol 194:195–196.  https://doi.org/10.1128/JB.06275-11 CrossRefGoogle Scholar
  39. van Bokhorst-van de Veen H, Lee IC, Marco ML, Wels M, Bron PA, Kleerebezem M (2012) Modulation of Lactobacillus plantarum gastrointestinal robustness by fermentation conditions enables identification of bacterial robustness markers. PLoS One 7:e39053.  https://doi.org/10.1371/journal.pone.0039053 CrossRefGoogle Scholar
  40. van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46:W278–W281.  https://doi.org/10.1093/nar/gky383 CrossRefGoogle Scholar
  41. Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43:78–84.  https://doi.org/10.1093/nar/gkv487 CrossRefGoogle Scholar
  42. Wang Y, Shang N, Qin Y, Zhang Y, Zhang J, Li P (2018) The complete genome sequence of Lactobacillus plantarum LPL-1, a novel antibacterial probiotic producing class IIa bacteriocin. J Biotechnol 266:84–88.  https://doi.org/10.1016/j.jbiotec.2017.12.006 CrossRefGoogle Scholar
  43. Zotta T, Parente E, Ricciardi A (2017) Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry. J Appl Microbiol 122:857–869.  https://doi.org/10.1111/jam.13399 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyFaculty of Pharmacy, University of GranadaGranadaSpain

Personalised recommendations