Advertisement

Biotransformation of benzoin by Sphingomonas sp. LK11 and ameliorative effects on growth of Cucumis sativus

  • Amjad Ali
  • Tapan Kumar MohantaEmail author
  • Sajjad Asaf
  • Najeebur Rehman
  • Saif Al-Housni
  • Ahmed Al-Harrasi
  • Abdul Latif Khan
  • Ahmed Al-Rawahi
Original Paper
  • 16 Downloads

Abstract

Plant endophytes play vital role in plant growth promotion as well as in abiotic and biotic stress tolerance. They also mediate biotransformation of complex organic materials to simpler and useful by-product. Therefore, the role of plant endophyte in plant growth promotion and stress tolerance has gained considerable attention in recent days. Sphingomonas sp. LK11 is an important plant endophyte that actively regulates plant growth. However, the biotransformation and stress tolerance potential of Sphingomonas sp. LK11 was yet to be elucidated. Therefore, we studied the biotransformation of benzoin by Sphingomonas sp. LK11. We found that, Sphingomonans sp. LK11 biotransformed benzoin to benzamide. Further application of benzamide to Cucumis sativus led to decrease in agronomic potential of C. sativus as benzamide acts as an abiotic stress agent. However, the application of Sphingomonas sp. LK11 inoculums with benzamide reverted back the agronomic trait of the plants, suggesting the role of Sphingomonas sp. LK11 in biotransformation and abiotic stress tolerance in plants.

Keywords

Sphingomonas sp. LK11 Biotransformation Benzoin Benzamide Abiotic stress 

Notes

Author contributions

AA: performed the experiments, TKM: analyzed data and drafted the manuscript, SA: performed experiments; NR: revised the manuscript; SAH: revised the manuscript; ALK: conceived the idea and revised the manuscript; ASA: conceived the idea and revised the manuscript; AAR: revised the manuscript;

Compliance with ethical standards

Conflict of interest

There is no competing interest to declare.

Supplementary material

203_2019_1623_MOESM1_ESM.pdf (75 kb)
Supplementary material 1 (PDF 74 KB)
203_2019_1623_MOESM2_ESM.pdf (404 kb)
Supplementary material 2 (PDF 403 KB)

References

  1. Asaf S, Khan AL, Khan MA et al (2018) Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth. 3 Biotech 8:389.  https://doi.org/10.1007/s13205-018-1403-z CrossRefGoogle Scholar
  2. Asif M (2015) Pharmacological potential of benzamide analogues and their uses in medicinal chemistry. Mod Chem Appl 4:1000194.  https://doi.org/10.4172/2329-6798 Google Scholar
  3. Bae S-J, Mohanta TK, Chung JY et al (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138.  https://doi.org/10.1016/j.biocontrol.2015.10.005 CrossRefGoogle Scholar
  4. Bai N, Wang S, Sun P et al (2018) Degradation of nonylphenol polyethoxylates by functionalized Fe3O4 nanoparticle-immobilized Sphingomonas sp. Y2. Sci Total Environ 615:462–468.  https://doi.org/10.1016/j.scitotenv.2017.09.290 CrossRefGoogle Scholar
  5. Dai Z-C, Fu W, Wan L-Y et al (2016) Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front Plant Sci 7:706.  https://doi.org/10.3389/fpls.2016.00706 Google Scholar
  6. Doke N (1983) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23:359–367.  https://doi.org/10.1016/0048-4059(83)90020-6 CrossRefGoogle Scholar
  7. Egamberdieva D, Wirth SJ, Shurigin VV et al (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1–13.  https://doi.org/10.3389/fmicb.2017.01887 Google Scholar
  8. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77.  https://doi.org/10.1016/0003-9861(59)90090-6 CrossRefGoogle Scholar
  9. Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78.  https://doi.org/10.1016/j.mex.2015.02.008 CrossRefGoogle Scholar
  10. Fujiwara H, Soda S, Fujita M, Ike M (2016) Kinetics of bisphenol a degradation by Sphingomonas paucimobilis FJ-4. J Biosci Bioeng 122:341–344.  https://doi.org/10.1016/j.jbiosc.2016.02.015 CrossRefGoogle Scholar
  11. Gao J, Wang Y, Wang CW, Lu BH (2014) First report of bacterial root rot of ginseng caused by pseudomonas aeruginosa in China. Plant Dis 98:1577.  https://doi.org/10.1094/PDIS-03-14-0276-PDN CrossRefGoogle Scholar
  12. Ghavami N, Alikhani HA, Pourbabaee AA, Besharati H (2016) Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of canola and maize plants. Commun Soil Sci Plant Anal 47:1517–1527.  https://doi.org/10.1080/00103624.2016.1194991 CrossRefGoogle Scholar
  13. Gong B, Wu P, Huang Z et al (2016) Enhanced degradation of phenol by Sphingomonas sp. GY2B with resistance towards suboptimal environment through adsorption on kaolinite. Chemosphere 148:388–394.  https://doi.org/10.1016/j.chemosphere.2016.01.003 CrossRefGoogle Scholar
  14. Gururani M, Mohanta T, Bae H (2015) Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int J Mol Sci 16:19055–19085.  https://doi.org/10.3390/ijms160819055 CrossRefGoogle Scholar
  15. Habib S, Kausar H, Halimi M (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymesGoogle Scholar
  16. Halo BA, Khan AL, Waqas M et al (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10:117–125.  https://doi.org/10.1080/17429145.2015.1033659 CrossRefGoogle Scholar
  17. Hardoim PR, van Overbeek LS, Elsas JD van (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471.  https://doi.org/10.1016/j.tim.2008.07.008 CrossRefGoogle Scholar
  18. Hassan SE-D (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8:687–695.  https://doi.org/10.1016/j.jare.2017.09.001 CrossRefGoogle Scholar
  19. Hossain MA, Al-Hdhrami SS, Weli AM et al (2014) Isolation, fractionation and identification of chemical constituents from the leaves crude extracts of Mentha piperita L grown in Sultanate of Oman. Asian Pac J Trop Biomed 4:S368–S372.  https://doi.org/10.12980/APJTB.4.2014C1051 CrossRefGoogle Scholar
  20. Iqbal A, Arshad M, Hashmi I et al (2017) Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa. Environ Technol 1–10.  https://doi.org/10.1080/09593330.2017.1337232
  21. Jaroszewski JW, Stærk D, Boe Holm-Møller S et al (2005) Naravelia zeyanica: occurrence of primary benzamides in flowering plants. Nat Prod Res 19:291–294.  https://doi.org/10.1080/14786410410001714641 CrossRefGoogle Scholar
  22. Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3:71–77.  https://doi.org/10.1016/j.jarmap.2016.02.003 Google Scholar
  23. Kadowaki MAS, Müller-Santos M, Rego FGM et al (2011) Identification and characterization of PhbF: A DNA binding protein with regulatory role in the PHB metabolism of Herbaspirillum seropedicae SmR1. BMC Microbiol 11:230.  https://doi.org/10.1186/1471-2180-11-230 CrossRefGoogle Scholar
  24. Kalaji HM, Jajoo A, Oukarroum A et al (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102.  https://doi.org/10.1007/s11738-016-2113-y CrossRefGoogle Scholar
  25. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067CrossRefGoogle Scholar
  26. Kang S-M, Khan AL, Waqas M, You Y-H et al (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682.  https://doi.org/10.1080/17429145.2014.894587 CrossRefGoogle Scholar
  27. Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319CrossRefGoogle Scholar
  28. Kera Y, Abe K, Kasai D et al (2016) Draft genome sequences of Sphingobium sp. strain TCM1 and Sphingomonas sp. strain TDK1, haloalkyl phosphate flame retardant- and plasticizer-degrading bacteria. Genome Announc 4:e00668–16.  https://doi.org/10.1128/genomeA.00668-16 CrossRefGoogle Scholar
  29. Khan AL, Waqas M, Kang S-M et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695.  https://doi.org/10.1007/s12275-014-4002-7 CrossRefGoogle Scholar
  30. Khan AL, Halo BA, Elyassi A et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64.  https://doi.org/10.1016/j.ejbt.2016.02.001 CrossRefGoogle Scholar
  31. Knoth JL, Kim SH, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609.  https://doi.org/10.1111/nph.12536 CrossRefGoogle Scholar
  32. Kumar SM, Kumar SR, Supriya S et al (2014) Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54:585–597.  https://doi.org/10.1002/jobm.201200564 CrossRefGoogle Scholar
  33. Kumari R, Subudhi S, Suar M et al (2002) Cloning and characterization of lin genes responsible for the degradation of Hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028.  https://doi.org/10.1128/AEM.68.12.6021-6028.2002 CrossRefGoogle Scholar
  34. Kweon O, Kim SJ, Kim DW et al (2014) Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. J Bacteriol 196:3503–3515.  https://doi.org/10.1128/JB.01945-14 CrossRefGoogle Scholar
  35. Li D, Yan Y, Ping S et al (2010) Genome-wide investigation and functional characterization of the β-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeriA1501. BMC Microbiol 10:36.  https://doi.org/10.1186/1471-2180-10-36 CrossRefGoogle Scholar
  36. Lichtenthaler H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591 LP–L592CrossRefGoogle Scholar
  37. Liu D, Jin X, Sun X et al (2016) Sphingomonas faucium sp. nov., isolated from canyon soil. Int J Syst Evol Microbiol 66:2847–2852.  https://doi.org/10.1099/ijsem.0.001064 CrossRefGoogle Scholar
  38. Ma T, Zhou Y, Li X et al (2016) Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli. Biotechnol J 11:228–237.  https://doi.org/10.1002/biot.201400827 CrossRefGoogle Scholar
  39. MacLean AM, MacPherson G, Aneja P, Finan TM (2006) Characterization of the β-Ketoadipate Pathway in Sinorhizobium meliloti. Appl Environ Microbiol 72:5403–5413.  https://doi.org/10.1128/AEM.00580-06 CrossRefGoogle Scholar
  40. Manickam N, Bajaj A, Saini HS, Shanker R (2012) Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05. Biodegradation 23:673–682.  https://doi.org/10.1007/s10532-012-9543-z CrossRefGoogle Scholar
  41. Mei C, Flinn B (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95CrossRefGoogle Scholar
  42. Miller TR, Delcher AL, Salzberg SL et al (2010) Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J Bacteriol 192:6101–6102.  https://doi.org/10.1128/JB.01030-10 CrossRefGoogle Scholar
  43. Mohanta TK (2013) Plant metabolomics: missing link in next generation functional genomics era. J Appl Biol Biotechnol 1:1–10.  https://doi.org/10.7324/JABB.2013.1301 Google Scholar
  44. Mulla SI, Wang H, Sun Q et al (2016) Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci Rep 6:21965CrossRefGoogle Scholar
  45. Narayana B, Vijaya Raj KK, Ashalatha BV et al (2004) Synthesis of some new 5-(2-substituted-1,3-thiazol-5-yl)-2-hydroxy benzamides and their 2-alkoxy derivatives as possible antifungal agents. Eur J Med Chem 39:867–872.  https://doi.org/10.1016/j.ejmech.2004.06.003 CrossRefGoogle Scholar
  46. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358.  https://doi.org/10.1016/0003-2697(79)90738-3 CrossRefGoogle Scholar
  47. Oteino N, Lally RD, Kiwanuka S et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745.  https://doi.org/10.3389/fmicb.2015.00745 CrossRefGoogle Scholar
  48. Ratcliff WC, Kadam SV, Denison RF (2008) Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol 65:391–399.  https://doi.org/10.1111/j.1574-6941.2008.00544.x CrossRefGoogle Scholar
  49. Ronca S, Frossard A, Guerrero LD et al (2015) Draft genome sequence of Sphingomonas sp. strain Ant20, isolated from oil-contaminated soil on Ross Island. Antarctica Genome Announc 3:e01309–e01314.  https://doi.org/10.1128/genomeA.01309-14 Google Scholar
  50. Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9CrossRefGoogle Scholar
  51. Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99.  https://doi.org/10.1016/j.micres.2015.11.008 CrossRefGoogle Scholar
  52. Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596.  https://doi.org/10.1007/s00253-013-5235-9 CrossRefGoogle Scholar
  53. Tabata M, Ohtsubo Y, Ohhata S et al (2013) Complete genome sequence of the γ-hexachlorocyclohexane-degrading bacterium Sphingomonas sp. Strain MM-1. Genome Announc 1:e00247–e00213.  https://doi.org/10.1128/genomeA.00247-13 CrossRefGoogle Scholar
  54. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefGoogle Scholar
  55. Ullah A, Mushtaq H, Fahad S et al (2017) Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology 86:119–127.  https://doi.org/10.1134/S0026261717010155 CrossRefGoogle Scholar
  56. Zhang X, Liu X, Wang Q et al (2014) Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Int Biodeterior Biodegradation 87:99–105.  https://doi.org/10.1016/j.ibiod.2013.11.007 CrossRefGoogle Scholar
  57. Zhu X, Ni X, Waigi MG et al (2016) Biodegradation of Mixed PAHs by PAH-degrading endophytic bacteria. Int J Environ Res Public Health 13:805.  https://doi.org/10.3390/ijerph13080805 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amjad Ali
    • 1
  • Tapan Kumar Mohanta
    • 1
    Email author
  • Sajjad Asaf
    • 1
  • Najeebur Rehman
    • 1
  • Saif Al-Housni
    • 1
  • Ahmed Al-Harrasi
    • 1
  • Abdul Latif Khan
    • 1
  • Ahmed Al-Rawahi
    • 1
  1. 1.Natural and Medicinal Plant Research CenterUniversity of NizwaNizwaOman

Personalised recommendations