A comparison of dynamic distributions of intestinal microbiota between Large White and Chinese Shanxi Black pigs

  • Pengfei Gao
  • Yadan Liu
  • Baoyu Le
  • Benyuan Qin
  • Min Liu
  • Yuanyuan Zhao
  • Xiaohong Guo
  • Guoqing Cao
  • Jianfeng Liu
  • Bugao Li
  • Zhibian DuanEmail author
Original Paper


Intestinal microbiota has been widely recognized to influence on their hosts with respect to digestion and absorption of nutrients, but little is known about the structure and composition of microbial communities at different growth periods of hosts as yet. In this case, 16S rRNA gene amplicon sequencing was applied to decode the microbiota architecture in four distinct intestinal compartments (duodenum, jejunum, ileum, and cecum) of both Large White pigs and Chinese Shanxi Black pigs at the weaning, nursery, and fast-growth developmental stages. In our study, the intestinal ecosystems were dynamically changing and influenced by host maturity and diets at different development stages. Species phylogenetically affiliated to phyla Firmicutes, Proteobacteria, and Bacteroidetes were abundant in both pig breeds; at the genus level, microbial communities were dominated by Prevotella, followed by Acinetobacter and Lactobacillus. Further inspection revealed that Lactobacillus was identified to be positively associated with villus height, whereas Acinetobacter and Prevotella were prone to reside in deep crypts. Furthermore, intestinal microbiota in Shanxi Black pigs had more metabolic and less infectious functions than that in Large White pigs. In short, our data present here indicated that microbiota with longitudinal diversity and lower infection in Shanxi Black pigs might contribute to the relatively stronger adaptability in comparison with Large White pigs.


Pig breeds Gut microbiota 16S rRNA sequencing Dynamic distributions 



The work was funded by the Foundation of Science and Technology Innovation Team of Shanxi Province (201705D131028-19), the Fund for Shanxi 1331 Project, Program for Sanjin scholar, Tongren Science and Technology Plan Project (2016TRS76445), and the Key project of Shanxi Key R&D Program of China (01703D211001-05-02).

Supplementary material

203_2019_1620_MOESM1_ESM.xlsx (14 kb)
Supplementary material 1 (XLSX 14 KB)
203_2019_1620_MOESM2_ESM.xlsx (17 kb)
Supplementary material 2 (XLSX 16 KB)
203_2019_1620_MOESM3_ESM.xlsx (54 kb)
Supplementary material 3 (XLSX 53 KB)
203_2019_1620_MOESM4_ESM.xlsx (105 kb)
Supplementary material 4 (XLSX 105 KB)
203_2019_1620_MOESM5_ESM.xlsx (97 kb)
Supplementary material 5 (XLSX 96 KB)
203_2019_1620_MOESM6_ESM.xlsx (90 kb)
Supplementary material 6 (XLSX 89 KB)
203_2019_1620_MOESM7_ESM.xlsx (27 kb)
Supplementary material 7 (XLSX 27 KB)
203_2019_1620_MOESM8_ESM.xlsx (25 kb)
Supplementary material 8 (XLSX 25 KB)
203_2019_1620_MOESM9_ESM.xlsx (30 kb)
Supplementary material 9 (XLSX 29 KB)
203_2019_1620_MOESM10_ESM.tif (35.1 mb)
Fig. S1 LEFse analysis revealed differentiated taxon A-D. LDA scores and cladogram of differentiated taxa of the segmented D, J, I, and C in the B-groups. E-H. LDA scores and cladogram of differentiated taxa of the segmented D, J, I, and C in the W-groups (TIF 35953 KB)


  1. Ahn KB, Baik JE, Park OJ, Yun CH, Han SH (2018) Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS One 13(2):e0192694CrossRefPubMedCentralGoogle Scholar
  2. Aviles-Jimenez F, Guogin Y, Torres-Poveda K, Madrid-Marina V, Torres J (2017) On the search to elucidate the role of the microbiota in the genesis of cancer: the cases of gastrointestinal and cervical cancer. Arch Med Res 48(8):754–765CrossRefGoogle Scholar
  3. Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12(7):1842–1854CrossRefGoogle Scholar
  4. Cao G, Yuan J, Zhou Z, Zhang W, Wu G (2000) Study on phenotypic and genetic parameters for reproductive traits of Shanxi lean-type swine (SD-II strain). J Shanxi Agric Univ 4:320–323 (in Chinese with English abstract) Google Scholar
  5. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624CrossRefPubMedCentralGoogle Scholar
  6. Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F, Seganti L, Osborn J, Falconieri P, Borrelli O, Cucchiara S (2006) Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 55(12):1760–1767CrossRefPubMedCentralGoogle Scholar
  7. Costa MC, Arroyo LG, Allen-Vercoe E, Stampfli HR, Kim PT, Sturgeon A, Weese JS (2012) Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PLoS One 7(7):e41484CrossRefPubMedCentralGoogle Scholar
  8. Costa MC, Stämpfli HR, Arroyo LG, Allen-Vercoe E, Gomes RG, Weese JS (2015) Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs. BMC Vet Res 11(1):19CrossRefPubMedCentralGoogle Scholar
  9. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072CrossRefPubMedCentralGoogle Scholar
  10. Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y (2014) KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol Biosyst 10(9):2441–2447CrossRefGoogle Scholar
  11. Fang S, Xiong X, Su Y, Huang L, Chen C (2017) 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 17(1):162CrossRefPubMedCentralGoogle Scholar
  12. He D, Zou T, Gai X, Ma J, Li M, Huang Z, Chen D (2017) MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds. PLoS One 12(7):e0181897CrossRefPubMedCentralGoogle Scholar
  13. Hillman ET, Lu H, Yao T, Nakatsu CH (2017) Microbial ecology along the gastrointestinal tract. Microbes Environ 32(4):300–313CrossRefPubMedCentralGoogle Scholar
  14. Inatomi T, Amatatsu M, Romero-Perez GA, Inoue R, Tsukahara T (2017) Dietary probiotic compound improves reproductive performance of porcine epidemic Diarrhea virus-infected sows reared in a Japanese commercial swine farm under vaccine control condition. Front Immunol 8:1877CrossRefPubMedCentralGoogle Scholar
  15. Inoue R, Ohue-Kitano R, Tsukahara T, Tanaka M, Masuda S, Inoue T, Yamakage H, Kusakabe T, Hasegawa K, Shimatsu A et al (2017) Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients. J Clin Biochem Nutr 61(3):217–221CrossRefPubMedCentralGoogle Scholar
  16. Kashyap PC, Chia N, Nelson H, Segal E, Elinav E (2017) Microbiome at the frontier of personalized medicine. Mayo Clin Proc 92(12):1855–1864CrossRefPubMedCentralGoogle Scholar
  17. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ et al (2011) Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 153(1–2):124–133CrossRefGoogle Scholar
  18. Kim J, Kim J, Kim Y, Oh S, Song M, Choe JH, Whang KY, Kim KH, Oh S (2018) Influences of quorum-quenching probiotic bacteria on the gut microbial community and immune function in weaning pigs. Anim Sci J 89(2):412–422CrossRefGoogle Scholar
  19. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821CrossRefPubMedCentralGoogle Scholar
  20. Lee SH, Hur MH, Lee EA, Hong KC, Kim JM (2018) Genomic characterization of the porcine CRTC3 and the effects of a non-synonymous mutation p.V515F on lean meat production and belly fat. Meat Sci 137:211–215CrossRefGoogle Scholar
  21. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science China-Life Sciences 320:1095–9203Google Scholar
  22. Li H, Zhou Z, Yin Y (2002) Analysis of selection response of Shanxi lean-meat pig new line SD-II. J Hubei Agric Coll 22(2):135–137 (in Chinese with English abstract) Google Scholar
  23. Liu J, Cao G, Zhou Z (2001) Estimates of genetic parameters for growth and development traits of shanxi lean-type swine (SD-II strain). J Shanxi Agric Univ 21(3):212–214 (in Chinese with English abstract) Google Scholar
  24. Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 8:237CrossRefPubMedCentralGoogle Scholar
  25. Piccolo BD, Mercer KE, Bhattacharyya S, Bowlin AK, Saraf MK, Pack L et al (2017) Early postnatal diets affect the bioregional small intestine microbiome and ileal metabolome in neonatal pigs. J Nutr 147(8):1499–1509CrossRefGoogle Scholar
  26. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140CrossRefGoogle Scholar
  27. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133CrossRefGoogle Scholar
  28. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefPubMedCentralGoogle Scholar
  29. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60CrossRefPubMedCentralGoogle Scholar
  30. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904CrossRefGoogle Scholar
  31. Sommer F, Backhed F (2013) The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 11(4):227–238CrossRefGoogle Scholar
  32. Tian Y, Nichols RG, Cai J, Patterson AD, Cantorna MT (2017) Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. J Nutr Biochem 54:28–34CrossRefGoogle Scholar
  33. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031CrossRefGoogle Scholar
  34. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267CrossRefPubMedCentralGoogle Scholar
  35. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5(4):e1000352CrossRefPubMedCentralGoogle Scholar
  36. Yang H, Xiao Y, Wang J, Xiang Y, Gong Y, Wen X, Li D (2018) Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age. J Microbiol 56(5):346–355CrossRefGoogle Scholar
  37. Zou C, Li S, Deng L, Guan Y, Chen D, Yuan X, Xia T, He X, Shan Y, Li C (2017) Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growth and meat quality differences between Yorkshire and Wannanhua pig. Genes (Basel) 8(8):203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pengfei Gao
    • 1
  • Yadan Liu
    • 1
  • Baoyu Le
    • 1
  • Benyuan Qin
    • 1
  • Min Liu
    • 1
  • Yuanyuan Zhao
    • 2
  • Xiaohong Guo
    • 1
  • Guoqing Cao
    • 1
  • Jianfeng Liu
    • 3
  • Bugao Li
    • 1
  • Zhibian Duan
    • 1
    Email author
  1. 1.Department of Animal Sciences and Veterinary MedicineShanxi Agricultural UniversityTaiguChina
  2. 2.Wujiang CollegeTongren UniversityTongrenChina
  3. 3.College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina

Personalised recommendations