Archives of Microbiology

, Volume 201, Issue 2, pp 193–198 | Cite as

Blastococcus deserti sp. nov., isolated from a desert sample

  • Zi-Wen Yang
  • Mipeshwaree Devi Asem
  • Xin Li
  • Lan-Yu Li
  • Nimaichand SalamEmail author
  • Dalal Hussien M. Alkhalifah
  • Wael N. Hozzein
  • Guo-Xing Nie
  • Wen-Jun LiEmail author
Original Paper


A Gram-positive and aerobic actinobacterium, strain SYSU D8006T, was isolated from a desert sand sample collected from Gurbantunggut desert, China. Phenotypically, the strain was found to grow at 14–50 °C, pH 6.0–9.0 and in the presence of up to 4% (w/v) NaCl. The chemotaxonomic features of strain SYSU D8006T included menaquinone MK-9(H4) as the respiratory quinone, diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside as known polar lipids, iso-C15:0, iso-C16:0, C17:1ω8c and C18:1ω9c as the predominant fatty acids, and arabinose, galactose and glucose as the whole cell sugars. Strain SYSU D8006T shared the highest 16S rRNA gene sequence identity with Blastococcus jejuensis DSM 19597T (98.2%). Based on the analyses of the phenotypic, genotypic and phylogenetic characteristics, strain SYSU D8006T is characterized to represent a novel species of the genus Blastococcus, for which the name Blastococcus deserti sp. nov. is proposed. The type strain is SYSU D8006T (= CGMCC 1.15935T = KCTC 49026T = CPCC 204618T).


Blastococcus deserti sp. nov. Xinjiang Gurbantunggut Desert 



The authors are grateful to Dr. Rüdiger Pukall (DSMZ, Germany) for providing the reference type strains. This research was supported by the Xinjiang Uygur Autonomous Region regional coordinated innovation project (Shanghai Cooperation Organization Science and Technology Partnership Program) (Grant No. 2017E01031), National Natural Science Foundation of China (Grant No. 31850410475), the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, through the Research Groups Program (Grant No. RGP-1438-0004), and China Biodiversity Observation Networks (SinoBON). WJL is supported by a project funded by Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme (2014).

Author contributions

NS and WJL conceived the study. ZWY, LYL, MDA and XL performed research. LYL, ZWY, DHMA and NS analyzed data. ZWY, NS and WJL wrote the paper. All authors approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

203_2018_1604_MOESM1_ESM.docx (836 kb)
Supplementary material 1 (DOCX 836 KB)


  1. Ahrens R, Moll G (1970) Ein neues knospendes Bakterium aus der Ostsee. Arch Mikrobiol 70:243–265CrossRefGoogle Scholar
  2. Asem MD, Shi L, Jiao JY, Wang D, Han MX, Dong L, Liu F, Salam N, Li WJ (2018) Desertimonas flava gen. nov., sp. nov. isolated from a desert soil, and proposal of Ilumatobacteraceae fam. nov. Int J Syst Evol Microbiol 68:3593-3599CrossRefGoogle Scholar
  3. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993Google Scholar
  4. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466CrossRefGoogle Scholar
  5. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  6. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230CrossRefGoogle Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  10. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715CrossRefGoogle Scholar
  11. Hamada M, Tamura T, Ishida Y, Suzuki K (2009) Georgenia thermotolerans sp. nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 59:1875–1879CrossRefGoogle Scholar
  12. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322CrossRefGoogle Scholar
  13. Hezbri K, Louati M, Nouioui I, Gtari M, Rohde M, Spröer C, Schumann P, Klenk HP, Ghodhbane-Gtari F, Montero-Calasanz MC (2016) Blastococcus capsensis sp. nov., isolated from an archaeological Roman pool and emended description of the genus Blastococcus, B. aggregatus, B. saxobsidens, B. jejuensis and B. endophyticus. Int J Syst Evol Microbiol 66:4864–4872CrossRefGoogle Scholar
  14. Hezbri K, Nouioui I, Rohde M, Schumann P, Gtari M, Klenk HP, Montero-Calasanz MC, Ghodhbane-Gtari F (2017) Blastococcus colisei sp. nov, isolated from an archaeological amphitheatre. Antonie Van Leeuwenhoek 110:339–346CrossRefGoogle Scholar
  15. Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  16. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704CrossRefGoogle Scholar
  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  18. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz TDW (ed) Actinomycete taxonomy special publication, no 6. Society for Industrial Microbiology, Arlington, pp 227–291Google Scholar
  19. Lee SD (2006) Blastococcus jejuensis sp. nov., an actinomycete from beach sediment, and emended description of the genus Blastococcus Ahrens and Moll 1970. Int J Syst Evol Microbiol 56:2391–2396CrossRefGoogle Scholar
  20. Leifson E (1960) Atlas of bacterial flagellation. Academic Press, LondonCrossRefGoogle Scholar
  21. Liu YH, Guo JW, Salam N, Li L, Zhang YG, Han J, Mohamad OA, Li WJ (2016) Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech 6:209. CrossRefGoogle Scholar
  22. McFaddin JF (1976) Biochemical tests for identification of medical bacteria. Williams & Wilkins Co., BaltimoreGoogle Scholar
  23. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM. Brooks P, Seviour RJ (2001) A simple HPLC method for analyzing diaminopimelic acid diastereomers in cell walls of Gram positive bacteria. Lett Appl Microbiol 30:178–182CrossRefGoogle Scholar
  24. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  25. Ming H, Nie GX, Jiang HC, Yu TT, Zhou EM, Feng HG, Tang SK, Li WJ (2012) Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie Van Leeuwenhoek 102:297–305CrossRefGoogle Scholar
  26. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  27. Nie GX, Ming H, Li S, Zhou EM, Cheng J, Tang X, Feng HG, Tang SK, Li WJ (2012) Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 62:2650–2656CrossRefGoogle Scholar
  28. Normand P (2006) Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 56:2277–2278CrossRefGoogle Scholar
  29. Normand P, Daffonchio D, Gtari M (2014) The Family Geodermatophilaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg, pp 361–379Google Scholar
  30. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186CrossRefGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  32. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16Google Scholar
  33. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477Google Scholar
  34. Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. Int J Syst Evol Microbiol 64:3821–3832CrossRefGoogle Scholar
  35. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  36. Smibert R, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  37. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  38. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36CrossRefGoogle Scholar
  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysistools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  40. Urzı C, Salamone P, Schumann P, Rohde M, Stackebrandt E (2004) Blastococcus saxobsidens sp. nov., and emended descriptions of the genus Blastococcus Ahrens and Moll 1970 and Blastococcus aggregatus Ahrens and Moll 1970. Int J Syst Evol Microbiol 54:253–259CrossRefGoogle Scholar
  41. Yang ZW, Salam N, Hua ZS, Liu BB, Han MX, Fang BZ, Wang D, Xiao M, Hozzein WN, Li WJ (2017) Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol 67:4862–4867CrossRefGoogle Scholar
  42. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1618CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zi-Wen Yang
    • 1
  • Mipeshwaree Devi Asem
    • 1
  • Xin Li
    • 1
  • Lan-Yu Li
    • 2
  • Nimaichand Salam
    • 1
    Email author
  • Dalal Hussien M. Alkhalifah
    • 3
  • Wael N. Hozzein
    • 4
  • Guo-Xing Nie
    • 2
  • Wen-Jun Li
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.College of FisheriesHenan Normal UniversityXinxiangPeople’s Republic of China
  3. 3.Biology Department, Faculty of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Bioproducts Research Chair, Zoology Department, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations