Advertisement

Population and oenological characteristics of non-Saccharomyces yeasts associated with grapes of Northwestern Argentina

  • Lucía M. Mendoza
  • Guillermo A. Vega-Lopez
  • Miguel Fernández de Ullivarri
  • Raúl R. Raya
Original Paper
  • 48 Downloads

Abstract

Yeasts population associated with grapes from Northwest Argentina, a region with a significant vine-growing increase over the past years, was evaluated. Ten species of non-Saccharomyces yeasts were identified from four grape varieties (Malbec, Merlot, Syrah and Torrontes) being Hanseniaspora uvarum the dominant species. Typing of isolates revealed genetic variability within Hanseniaspora genus and also high variability was observed according to their oenological characteristics. Based on the oenological properties, the most adequate strains as starter cultures were H. uvarum HuT7, HuMe15, HuS16, H. vineae HvT-mc1 and Metschnikowia pulcherrima MpT2/MpT3. These selected yeasts exhibited moderate resistance to SO2, reduced values of volatile acidity, null or low production of H2S, high levels of enzymes related to aroma and did not produce killer toxins. Further studies using mixed cultures of these non-Saccharomyces strains and S. cerevisiae are needed to validate the contribution of selected indigenous yeasts on wine organoleptic characteristics.

Keywords

Native yeasts Regional wine Oenological characteristics Hanseniaspora uvarum Strain selection 

Notes

Acknowledgements

Authors are grateful to Elena Bru for her collaboration with statistical analyses. This work was supported by grants of Agencia Nacional de Promoción Científica y Tecnológica (PICT 2010-0847 and PICT 2013-1930) and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 0320), Argentina.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Albertin W, Miot-Sertier C, Bely M, Marullo P, Coulon J, Moine V, Colonna-Ceccaldi B, Masneuf-Pomarede I (2014) Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must. Int J Food Microbiol 178:87–97.  https://doi.org/10.1016/j.ijfoodmicro.2014.03.009 CrossRefPubMedGoogle Scholar
  2. Albertin W, Setati ME, Miot-Sertier C, Mostert TT, Colonna-Ceccaldi B et al (2016) Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Front Microbiol 6:1569.  https://doi.org/10.3389/fmicb.2015.01569 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Banilas G, Sgouros G, Nisiotou A (2016) Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates. Microbiol Res 193:1–10.  https://doi.org/10.1016/j.micres.2016.08.010 CrossRefPubMedGoogle Scholar
  4. Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Int J Food Microbiol 153:243–259.  https://doi.org/10.1016/j.ijfoodmicro.2011.11.025 CrossRefPubMedGoogle Scholar
  5. Barquet M, Martín V, Medina K, Pérez G, Carrau F, Gaggero C (2012) Tandem repeat-tRNA (TRtRNA) PCR method for the molecular typing of non-Saccharomyces subspecies. Appl Microbiol Biotechnol 93:807–814.  https://doi.org/10.1007/s00253-011-3714-4 CrossRefPubMedGoogle Scholar
  6. Bisson LF, Joseph CML, Domizio P (2017) Yeasts. In: Kölnig H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Switzerland, pp 65–101CrossRefGoogle Scholar
  7. Brysch-Herzberg M, Seidel M (2015) Yeast diversity on grapes in two German wine growing regions. Int J Food Microbiol 214:137–144.  https://doi.org/10.1016/j.ijfoodmicro.2015.07.034 CrossRefPubMedGoogle Scholar
  8. Capece A, Fiore C, Maraz A, Romano P (2005) Molecular and technological approaches to evaluate strain biodiversity in Hanseniaspora uvarum of wine origin. J Appl Microbiol 98:136–144CrossRefGoogle Scholar
  9. Ciani M, Rosini G (1987) Definizione dell’indice di moltiplicazione della CO2 nella valutazione, per via ponderale, della capacità alcoligena di un lievito. Ann Fac Agrar Univ Stud Perugia 41:753–762Google Scholar
  10. Combina M, Elía A, Mercado L, Catania C, Ganga A, Martinez C (2005a) Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. Int J Food Microbiol 99:237–243CrossRefGoogle Scholar
  11. Combina M, Mercado L, Borgo P, Elia A, Jofré V, Ganga A, Martinez C, Catania C (2005b) Yeasts associated to Malbec grape berries from Mendoza, Argentina. J Appl Microbiol 98:1055–1061CrossRefGoogle Scholar
  12. Comi G, Romano P, Cocolin L, Fiore C (2001) Characterization of Kloeckera apiculata strains from Friuli region in North Italy. World J Microbiol Biotechnol 17:391–394CrossRefGoogle Scholar
  13. De Benedictis M, Bleve G, Grieco F, Tristezza M, Tufariello M, Grieco F (2011) An optimized procedure for the enological selection of non-Saccharomyces starter cultures. Antonie Van Leeuwenhoek 99:189–200.  https://doi.org/10.1007/s10482-010-9475-8 CrossRefPubMedGoogle Scholar
  14. Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, Ciani M (2011) Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int J Food Microbiol 147:170–180CrossRefGoogle Scholar
  15. Englezos V, Torchio F, Cravero F, Marengo F, Giacosa S, Gerbi V, Rantsiou K, Rolle L, Cocolin L (2016) Aroma profile and composition of Barbera wines obtained by mixed fermentations of Starmerella bacillaris. (synonym Candida zemplinina) and Saccharomyces cerevisiae. LWT Food Sci Technol 73:567–575CrossRefGoogle Scholar
  16. Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:329–337CrossRefGoogle Scholar
  17. Esteve-Zarzoso B, Hierro N, Mas A, Guillamon JM (2010) A new simplified AFLP method for wine yeast strain typing. LWT Food Sci Technol 43:1480–1484.  https://doi.org/10.1016/j.lwt.2010.05.016 CrossRefGoogle Scholar
  18. Farías ME, Manca de Nadra MC (2003) Flocculation and cell surface characterization of Kloeckera apiculata from wine. J Appl Microbiol 95:457–462CrossRefGoogle Scholar
  19. Fernández de Ullivarri M, Mendoza LM, Raya RR, Farías ME (2011) Killer phenotype of indigenous yeasts isolated from Argentinian wine cellars and their potential starter cultures for winemaking. Biotechnol Lett 33:2177–2183.  https://doi.org/10.1007/s10529-011-0674-9 CrossRefGoogle Scholar
  20. González-Arenzana L, Garijo P, Berlanas C, López-Alfaro I, López R, Santamaría P, Gutiérrez AR (2017) Variability of non-Saccharomyces yeasts populations from La Rioja winegrowing region (Spain). J Appl Microbiol 122:378–388CrossRefGoogle Scholar
  21. Hu K, Jin GJ, Mei WC, Li T, Tao YS (2018) Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem 239:495–501CrossRefGoogle Scholar
  22. Jolly N, Augustyn OPH, Pretoius IS (2003) The effect on non-Saccharomyces yeasts on fermentation and wine quality. S Afr J Enol Vitic 24:55–62Google Scholar
  23. Knight S, Klaere S, Fedrizzi B, Goddard MR (2015) Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Sci Rep 5:14233.  https://doi.org/10.1038/srep14233 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kurtzman CP, Fell JW (1998) The yeasts: a taxonomic study, 4th edn. Elsevier Science Publisher, AmsterdamGoogle Scholar
  25. Lage P, Barbosa C, Mateus B, Vasconcelos I, Mendes-Faia A, Mendes-Ferreira A (2014) H. guilliermondii impacts growth kinetics and metabolic activity of S. cerevisiae: the role of initial nitrogen concentration. Int J Food Microbiol 172:62–69.  https://doi.org/10.1016/j.ijfoodmicro.2013.11.031 CrossRefPubMedGoogle Scholar
  26. Li SS, Cheng C, Li Z, Chen JY, Yan B, Han BZ, Reeves M (2010) Yeast species associated with wine grapes in China. Int J Food Microbiol 138:85–90.  https://doi.org/10.1016/j.ijfoodmicro.2010.01.009 CrossRefPubMedGoogle Scholar
  27. Martini A (1993) Origin and domestication of the wine yeast Saccharomyces cerevisiae. J Wine Res 4:165–176.  https://doi.org/10.1080/09571269308717966 CrossRefGoogle Scholar
  28. Maturano YP, Assof M, Fabani MP, Nally MC, Jofré V, Rodríguez Assaf LA, Toro ME, Castellanos de Figueroa LI, Vazquez F (2015) Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition. Antonie Van Leeuwenhoek 108:1239–1256.  https://doi.org/10.1007/s10482-015-0578-0 CrossRefPubMedGoogle Scholar
  29. Medina K, Boido E, Fariña L, Gioia O, Gomez ME, Barquet M, Gaggero C, Dellacassa E, Carrau F (2013) Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem 141:2513–2521CrossRefGoogle Scholar
  30. Mendoza LM, Merín MG, Morata VI, Farías ME (2011) Characterization of wines produced by mixed culture of autochthonous yeasts and Oenococcus oeni from the Northwest region of Argentina. J Ind Microbiol Biotechnol 38:1777–1785.  https://doi.org/10.1007/s10295-011-0964-1 CrossRefPubMedGoogle Scholar
  31. Merín MG, Mendoza LM, Morata de Ambrosini VI (2014) Pectinolytic yeasts from viticultural and enological environments: novel finding of Filobasidium capsuligenum producing pectinases. J Basic Microbiol 54:835–842.  https://doi.org/10.1002/jobm.201200534 CrossRefPubMedGoogle Scholar
  32. Milanović V, Comitini F, Ciani M (2013) Grape berry yeast communities: influence of fungicide treatments. Int J Food Microbiol 161:240–246.  https://doi.org/10.1016/j.ijfoodmicro.2012.12.019 CrossRefPubMedGoogle Scholar
  33. Mortimer R, Polsinelli M (1999) On the origins of wine yeast. Res Microbiol 150:199–204CrossRefGoogle Scholar
  34. Padilla B, García-Fernández D, González B, Izidoro I, Esteve-Zarzoso B, Beltran G, Mas A (2016) Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations. Front Microbiol 7:930.  https://doi.org/10.3389/fmicb.2016.00930 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Padilla B, Zulian L, Ferreres À, Pastor R, Esteve-Zarzoso B, Beltran G, Mas A (2017) Sequential inoculation of native non-Saccharomyces and Saccharomyces cerevisiae strains for wine making. Front Microbiol 8:1293.  https://doi.org/10.3389/fmicb.2017.01293 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Querol A, Barrio E, Huerta T, Ramon D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953PubMedPubMedCentralGoogle Scholar
  37. Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2000) Handbook of enology, vol 1 The microbiology of wine and vinifications. Wiley, West SussexGoogle Scholar
  38. Rodríguez ME, Lopes CA, van Broock M, Vallés S, Ramón D, Caballero AC (2004) Screening and typing of Patagonian wine yeasts for glycosidase activities. J Appl Microbiol 96:84–95CrossRefGoogle Scholar
  39. Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180CrossRefGoogle Scholar
  40. Rosi I, Vinella M, Domizio P (1994) Characterization of beta-glucosidase activity in yeasts of oenological origin. J Appl Bacteriol 77:519–527CrossRefGoogle Scholar
  41. Sangorrín MP, Lopes CA, Giraudo MR, Caballero AC (2007) Diversity and killer behaviour of indigenous yeasts isolated from the fermentation vat surfaces in four Patagonian wineries. Int J Food Microbiol 119:351–357CrossRefGoogle Scholar
  42. Sun Y, Guo J, Liu F, Liu Y (2014) Identification of indigenous yeast flora isolated from the five winegrape varieties harvested in Xiangning, China. Antonie Van Leeuwenhoek 105:533–540CrossRefGoogle Scholar
  43. Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11:139–173CrossRefGoogle Scholar
  44. Vigentini I, Maghradze D, Petrozziello M, Bonello F, Mezzapelle V, Valdetara F, Failla O, Foschino R (2016) Indigenous Georgian wine-associated yeasts and grape cultivars to edit the wine quality in a precision oenology perspective. Front Microbiol 7:352.  https://doi.org/10.3389/fmicb.2016.00352 CrossRefPubMedPubMedCentralGoogle Scholar
  45. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungi ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Referencia para Lactobacilos (CERELA)TucumánArgentina
  2. 2.Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánTucumánArgentina

Personalised recommendations