Advertisement

Biochemical characterization of a Kunitz inhibitor from Inga edulis seeds with antifungal activity against Candida spp.

  • Heloisa Xavier Dib
  • Daniella Gorete Lourenço de Oliveira
  • Caio Fernando Ramalho de Oliveira
  • Gabriel Bonan Taveira
  • Erica de Oliveira Mello
  • Newton Valério Verbisk
  • Marilene Rodrigues Chang
  • Dario Corrêa Junior
  • Valdirene Moreira Gomes
  • Maria Lígia Rodrigues Macedo
Original Paper
  • 74 Downloads

Abstract

We describe the characterization of IETI, the first trypsin inhibitor purified from Inga edulis, a tree widely distributed in Brazil. Two-step chromatography was used to purify IETI, a protein composed of a single peptide chain of 19,685.10 Da. Amino-terminal sequencing revealed that IETI shows homology with the Kunitz family, as substantiated by its physical–chemical features, such as its thermal (up to 70 °C) and wide-range pH stability (from 2 to 10), and the value of its dissociation constant (6.2 nM). IETI contains a single reactive site for trypsin, maintained by a disulfide bridge; in the presence of DTT, its inhibitory activity was reduced in a time- and concentration-dependent manner. IETI presented activity against Candida ssp., including C. buinensis and C. tropicalis. IETI inhibitory activity triggered yeast membrane permeability, affecting cell viability, thus providing support for the use of IETI in further studies for the control of fungal infections.

Keywords

Trypsin inhibitor Membrane permeability Candida tropicalis Candida buinensis 

Notes

Funding

This work was supported by CNPq (407127/2013-5), CAPES and FINEP.

References

  1. Abad-Zapatero C et al (1996) Structure of a secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agents. Protein Sci 5:640–652CrossRefGoogle Scholar
  2. Azarkan M, Martinez-Rodriguez S, Buts L, Baeyens-Volant D, Garcia-Pino A (2011) The plasticity of the β-trefoil fold constitutes an evolutionary platform for protease inhibition. J Biol Chem 286:43726–43734CrossRefGoogle Scholar
  3. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575CrossRefGoogle Scholar
  4. Bhattacharyya A, Babu CR (2009) Purification and biochemical characterization of a serine proteinase inhibitor from Derris trifoliata Lour. seeds: insight into structural and antimalarial features. Phytochemistry 70:703–712.  https://doi.org/10.1016/j.phytochem.2009.04.001 CrossRefPubMedGoogle Scholar
  5. Bijina B et al (2011) Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative. Saudi J Biol Scie 18:273–281.  https://doi.org/10.1016/j.sjbs.2011.04.002 CrossRefGoogle Scholar
  6. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  7. Broekaert WF, Terras FR, Cammue BP, Vanderleyden J (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69:55–59CrossRefGoogle Scholar
  8. Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773CrossRefGoogle Scholar
  9. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814.  https://doi.org/10.1016/j.cell.2006.02.008 CrossRefPubMedGoogle Scholar
  10. da Silva Bezerra C et al (2016) Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: a multifunctional Kunitz inhibitor. Process Biochem 51:792–803CrossRefGoogle Scholar
  11. Di Ciero L et al (1998) The complete amino acid sequence of a trypsin inhibitor from Bauhinia variegata var. candida seeds. J Protein Chem 17:827–834CrossRefGoogle Scholar
  12. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133CrossRefGoogle Scholar
  13. Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152CrossRefGoogle Scholar
  14. Kim J-Y, Park S-C, Kim M-H, Lim H-T, Park Y, Hahm K-S (2005) Antimicrobial activity studies on a trypsin–chymotrypsin protease inhibitor obtained from potato. Biochem Biophys Res Commun 330:921–927.  https://doi.org/10.1016/j.bbrc.2005.03.057 CrossRefPubMedGoogle Scholar
  15. Kobayashi CCBA, Fernandes OdFL, Miranda KC, de Sousa ED, Silva MdRR (2004) Candiduria in hospital patients: a study prospective. Mycopathologia 158:49–52CrossRefGoogle Scholar
  16. Kraszewska J, Beckett MC, James TC, Bond U (2016) Comparative analysis of the antimicrobial activities of plant defensin-like and ultrashort peptides against food-spoiling bacteria. Appl Environ Microbiol 82:4288–4298CrossRefGoogle Scholar
  17. Kumar A, Zarychanski R, Pisipati A, Kumar A, Kethireddy S, Bow EJ (2018) Fungicidal versus fungistatic therapy of invasive Candida infection in non-neutropenic adults: a meta-analysis. Mycology.  https://doi.org/10.1080/21501203.2017.1421592 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  19. Li Z et al (2014) Reconstructed mung bean trypsin inhibitor targeting cell surface GRP78 induces apoptosis and inhibits tumor growth in colorectal cancer. Int J Biochem Cell Biol 47:68–75.  https://doi.org/10.1016/j.biocel.2013.11.022 CrossRefPubMedGoogle Scholar
  20. Lingaraju MH, Gowda LR (2008) A Kunitz trypsin inhibitor of Entada scandens seeds: another member with single disulfide bridge. Biochim Biophys Acta (BBA) Proteins Proteom 1784:850–855.  https://doi.org/10.1016/j.bbapap.2008.02.013 CrossRefGoogle Scholar
  21. Macedo MLR, Garcia VA, Freire MGM, Richardson M (2007) Characterization of a Kunitz trypsin inhibitor with a single disulfide bridge from seeds of Inga laurina (SW.) Willd. Phytochemistry 68:1104–1111.  https://doi.org/10.1016/j.phytochem.2007.01.024 CrossRefPubMedGoogle Scholar
  22. Madeo F et al (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767CrossRefGoogle Scholar
  23. Melo FR et al (2002) Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins Struct Funct Bioinform 48:311–319CrossRefGoogle Scholar
  24. Migliolo L, de Oliveira AS, Santos EA, Franco OL, de Sales MP (2010) Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases. J Mol Graph Model 29:148–156.  https://doi.org/10.1016/j.jmgm.2010.05.006 CrossRefPubMedGoogle Scholar
  25. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRefGoogle Scholar
  26. Oard S, Karki B (2006) Mechanism of β-purothionin antimicrobial peptide inhibition by metal ions: molecular dynamics simulation study. Biophys Chem 121:30–43CrossRefGoogle Scholar
  27. Oliva MLV, Silva MCC, Sallai RC, Brito MV, Sampaio MU (2010) A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie 92:1667–1673.  https://doi.org/10.1016/j.biochi.2010.03.021 CrossRefPubMedGoogle Scholar
  28. Oliveira CFR et al (2012) Purification and biochemical properties of a Kunitz-type trypsin inhibitor from Entada acaciifolia (Benth.) seeds. Process Biochem 47:929–935.  https://doi.org/10.1016/j.procbio.2012.02.022 CrossRefGoogle Scholar
  29. Onesti S, Brick P, Blow DM (1991) Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina caffra seeds. J Mol Biol 217:153–176.  https://doi.org/10.1016/0022-2836(91)90618-g CrossRefPubMedGoogle Scholar
  30. Page KR, Chaisson R, Sande M (2008) CHAPTER 34—cryptococcosis and other fungal infections (histoplasmosis and coccidioidomycosis) in HIV-infected patients. In: Global HIV/AIDS medicine. W.B. Saunders, Edinburgh, pp 375–391CrossRefGoogle Scholar
  31. Ramalho SR et al (2018) A novel peptidase Kunitz inhibitor from Platypodium elegans seeds is active against Spodoptera frugiperda larvae. J Agric Food Chem 66:1349-1358CrossRefGoogle Scholar
  32. Ramos VdS et al (2012) Molecular cloning and insecticidal effect of Inga laurina trypsin inhibitor on Diatraea saccharalis and Heliothis virescens. Comp Biochem Physiol C Toxicol Pharmacol 156:148–158.  https://doi.org/10.1016/j.cbpc.2012.07.007 CrossRefGoogle Scholar
  33. Rawlings ND, Barret JA, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350CrossRefGoogle Scholar
  34. Richardson M, Campos FAP, Xavier-Filho J, Macedo MLR, Maia GMC, Yarwood A (1986) The amino acid sequence and reactive (inhibitory) site of the major trypsin isoinhibitor (DE5) isolated from seeds of the Brazilian Carolina tree (Adenanthera pavonina L.). Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 872:134–140.  https://doi.org/10.1016/0167-4838(86)90156-1 CrossRefGoogle Scholar
  35. Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85CrossRefGoogle Scholar
  36. Sanglard D, Kuchler K, Ischer F, Pagani J, Monod M, Bille J (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39:2378–2386CrossRefGoogle Scholar
  37. Srinivasan A, Giri AP, Harsulkar AM, Gatehouse JA, Gupta VS (2005) A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Plant Mol Biol 57:359–374CrossRefGoogle Scholar
  38. Sumikawa JT, Nakahata AM, Fritz H, Mentele R, Sampaio MU, Oliva MLV (2006) A Kunitz-type glycosylated elastase inhibitor with one disulfide bridge. Planta Med 72:393–397CrossRefGoogle Scholar
  39. Tang H et al (2014) An improved genome release (version Mt4. 0) for the model legume Medicago truncatula. BMC Genom 15:312CrossRefGoogle Scholar
  40. Taveira GB, Carvalho AO, Rodrigues R, Trindade FG, Da Cunha M, Gomes VM (2016) Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol 16:12CrossRefGoogle Scholar
  41. Terada S, Fujimura S, Kino S, Kimoto E (1994) Purification and characterization of three proteinase inhibitors from Canavalia lineata seeds. Biosci Biotechnol Biochem 58:371–375CrossRefGoogle Scholar
  42. Thery T, Arendt EK (2018) Antifungal activity of synthetic cowpea defensin Cp-thionin II and its application in dough. Food Microbiol 73:111–121CrossRefGoogle Scholar
  43. Thevissen K, Terras FR, Broekaert WF (1999a) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458PubMedPubMedCentralGoogle Scholar
  44. Thevissen K, Terras FRG, Broekaert WF (1999b) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458PubMedPubMedCentralGoogle Scholar
  45. Vriens K, Cammue B, Thevissen K (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280–12303CrossRefGoogle Scholar
  46. Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD (2016) Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol 7:2173.  https://doi.org/10.3389/fmicb.2016.02173 CrossRefPubMedGoogle Scholar
  47. Wu Z et al (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc Natl Acad Sci 100:8880–8885CrossRefGoogle Scholar
  48. Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A (2009) The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol 68:133–216.  https://doi.org/10.1016/S0065-2164(09)01204-0 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zottich U et al (2013) An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Biochim Biophys Acta (BBA) Gen Subj 1830:3509–3516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Heloisa Xavier Dib
    • 1
  • Daniella Gorete Lourenço de Oliveira
    • 1
  • Caio Fernando Ramalho de Oliveira
    • 1
  • Gabriel Bonan Taveira
    • 2
  • Erica de Oliveira Mello
    • 2
  • Newton Valério Verbisk
    • 3
  • Marilene Rodrigues Chang
    • 4
  • Dario Corrêa Junior
    • 4
  • Valdirene Moreira Gomes
    • 2
  • Maria Lígia Rodrigues Macedo
    • 1
  1. 1.Laboratório de Purificação de Proteínas e suas Funções Biológicas, Faculdade de Ciências de Alimentos e NutriçãoUniversidade Federal do Mato Grosso do SulCampo GrandeBrazil
  2. 2.Laboratório de Fisiologia e Bioquímica de MicrorganismosUniversidade Estadual do Norte FluminenseCampos dos GoytacazesBrazil
  3. 3.Embrapa Gado de CorteCampo GrandeBrazil
  4. 4.Laboratório de Pesquisas Microbiológicas, Faculdade de Ciências de Alimentos e NutriçãoUniversidade Federal do Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations