Advertisement

Archives of Microbiology

, Volume 200, Issue 10, pp 1447–1456 | Cite as

The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment

  • Vanessa Moura
  • Iris Ribeiro
  • Priscilla Moriggi
  • Artur Capão
  • Carolina Salles
  • Suleima Bitati
  • Luciano Procópio
Original Paper

Abstract

To explore how a succession of bacteria grown on steel coupons in a marine environment can influence their corrosion process, we designed a microcosm in laboratory to evaluate corrosion kinetics and microbial diversity over 30 days. The results described a clear influence of corrosion by a succession of different bacterial groups. During the initial period, 2–7 days, a sharp increase in the rate of corrosion was detected accompanied by the presence of Alteromonadaceae, Vibrionaceae, Oceanospirillaceae, Rhodobacteraceae, Rhodospirillaceae and Flavobacteriaceae bacteria families. After 15 days, representatives of families Piscirickettsiaceae and Pseudomonadaceae were also described, accompanied by a continuous corrosion process over the coupons. After 30 days, there was a sudden change in the profile of the bacteria present on the steel coupons, with a prevalence of Halomonadaceae family species, and establishment and continuity of the corrosion process by the biofilm grown on the coupons. The results describe differences in microbial diversity over the time, highlighting certain bacterial lithotrophic species that persisted for most of the experiment, through a complex association between bacteria and metal surfaces, which can be a new starting point for development and maintenance of a favorable microenvironment to accelerate corrosion processes.

Keywords

Microbiologically influenced corrosion Steel coupons Carbon steel Microbial community Marine environmental 

References

  1. Angell P, Machowski WJ, Paul PP et al (1997) A multiple chemostat system for consortia studies on microbially influenced corrosion. J Microbiol Methods 30:173–178CrossRefGoogle Scholar
  2. Carpén L, Rajala P, Vepsäläinen M et al. (2013) Corrosion behaviour and biofilm formation on carbon steel and stainless steel in simulated repository environment. Paper Presented at the Eurocorr, Estoril, pp 1589Google Scholar
  3. Carvalho ML, Doma J, Sztyler M et al (2014) The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components. Bioelectrochemistry 97:2–6CrossRefGoogle Scholar
  4. Dang H, Lovell CR (2015) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80(1):91–138CrossRefGoogle Scholar
  5. Dang H, Chen R, Wang L et al (2011) Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol 13(11):3059–3074CrossRefGoogle Scholar
  6. Doghri I, Rodrigues S, Bazire A et al (2015) Marine bacteria from the French Atlantic coast displaying high forming-biofilm abilities and different biofilm 3D architectures. BMC Microbiol 15:231CrossRefGoogle Scholar
  7. Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19(1):65–76CrossRefGoogle Scholar
  8. Hays GF (2001) Now is the time. World Corrosion Organization, New YorkGoogle Scholar
  9. Hubert C, Nemati M, Jenneman G et al (2003) Containment of biogenic sulfide production in continuous up-flow packed be bioreactors. Biotechnol Prog 19:338–345CrossRefGoogle Scholar
  10. Jin J, Wu G, Guan Y (2015) Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water. Water Res 71:207–218CrossRefGoogle Scholar
  11. Koch GH, Brongers MPH, Thompon NG et al (2002) Corrosion cost and preventive strategies in the United States. NACE International, HoustonGoogle Scholar
  12. Lane RA (2005) Under the microscope: understanding, detecting, and preventing microbiologically influenced corrosion. AMPTIAC Q 9(1):3–8Google Scholar
  13. Lee AK, Newman DK (2003) Microbial iron respiration: impacts on corrosion processes. Appl Microbiol Biotechnol 62(2–3):134–139CrossRefGoogle Scholar
  14. Liengen T, Basseguy R, Feron D et al. (2014) Understanding biocorrosion: fundamentals and applications, 1st edn. Woodhead Publishing, CambridgeGoogle Scholar
  15. Marty F, Gueuné H, Malard E et al (2014) Identification of key factors in accelerated low water corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota. Biofouling 30(3):281–297CrossRefGoogle Scholar
  16. McBeth JM, Emerson D (2016) In situ microbial community succession on mild steel in estuarine and marine environments: exploring the role of iron-oxidizing bacteria. Front Microbiol 7:767CrossRefGoogle Scholar
  17. McBeth JM, Little BJ, Ray RI et al (2011) Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77(4):1405–1412CrossRefGoogle Scholar
  18. Melchers RE (1999) Corrosion uncertainty modelling for steel structures. J Constr Steel Res 52:3–19CrossRefGoogle Scholar
  19. Mumford AC, Adaktylou IJ, Emerson D (2016) Peeking under the iron curtain: development of a microcosm for imaging the colonization of steel surfaces by Mariprofundus sp. strain DIS-1, an oxygen-tolerant Fe-oxidizing bacterium. Appl Environ Microbiol 82(22):6799–6807CrossRefGoogle Scholar
  20. NACE RP-07-75 (2005) Standard recommended practice, preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations. NACE International, HoustonGoogle Scholar
  21. Quaiser A, Bodi X, Dufresne A et al (2014) Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics. PLoS One 9(7):e102561CrossRefGoogle Scholar
  22. Rabald V (1968) Corrosion guide. Elsevier, New YorkGoogle Scholar
  23. Rajala P, Carpén L, Vepsäläinen M et al (2015) Microbially induced corrosion of carbon steel in deep groundwater environment. Front Microbiol 24(6):647Google Scholar
  24. Ramírez GA, Hoffman CL, Lee MD et al (2016) Assessing marine microbial induced corrosion at Santa Catalina Island, California. Front Microbiol 7:1679CrossRefGoogle Scholar
  25. Sorokin DY, Tourova TP, Muyzer G (2005) Citreicella thiooxidans gen. nov., sp. Nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28(8):679–687CrossRefGoogle Scholar
  26. Thompon NG, Yunocivh M, Dunmiret D (2007) Cost of corrosion and corrosion maintenance strategies. Corros Rev 25:247Google Scholar
  27. Vandecandelaere I, Segaert E, Mollica A et al (2009) Phaeobacter caeruleus sp. nov., a blue-coloured, colony-forming bacterium isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 59(Pt5):1209–1214CrossRefGoogle Scholar
  28. Videla HA (1996) Manual of biocorrosion. Lewis Publishers, Boca RatonGoogle Scholar
  29. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8(3):169–180PubMedGoogle Scholar
  30. Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110:52–58CrossRefGoogle Scholar
  31. Xu D, Xia J, Zhou E et al (2017) Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry 113:1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vanessa Moura
    • 1
  • Iris Ribeiro
    • 1
  • Priscilla Moriggi
    • 1
  • Artur Capão
    • 1
  • Carolina Salles
    • 1
  • Suleima Bitati
    • 1
  • Luciano Procópio
    • 1
  1. 1.Microbial Corrosion LaboratoryEstácio University (UNESA)Rio de JaneiroBrazil

Personalised recommendations