Archives of Microbiology

, Volume 200, Issue 9, pp 1371–1379 | Cite as

Dissolved oxygen-mediated enrichment of quorum-sensing phenomenon in the bacterial community to combat oxidative stress

  • Hitesh Tikariha
  • Anshuman A. Khardenavis
  • Hemant J. Purohit
Original Paper


Microbial community with their plasticity follows a course of changes that allow adaptation and survival in a particular habitat. In this study perturbations in microbial flora dwelling in two reactors with phenol as a carbon source under the limiting nitrogen and phosphorus conditions were monitored for 3 months with alterations of dissolved oxygen (DO). With the time, the shift in diversity and abundance of bacteria were observed with simultaneous increase in biofilm-forming bacteria like Pseudomonas, Escherichia, etc. Functional level screening revealed that the abundance of core metabolic genes were not much altered, however, the regulated level of increase in quorum sensing genes (acyl-homoserine lactone), biofilm-forming genes, catalase and ferroxidase enzymes at high DO suggest the survival mechanism of the community. This study sheds light on survival route followed by the bacterial community with abiotic stress, such as an increase in DO.


Community dynamics Comparative metagenome Quorum sensing Biofilm Oxidative stress 



Mr. Hitesh Tikariha gratefully acknowledges the Senior Research Fellowship (SRF) from the University Grants Commission (UGC) of India and also CSIR-NEERI for carrying out this work. KRC no. CSIR-NEERI/KRC/2018/MAY/EBGD/2.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no conflicts of interests.

Supplementary material

203_2018_1551_MOESM1_ESM.jpg (396 kb)
Supplementary Fig 1. Reactor Design. The figure shows the schematic layout of the reactor setup used in the study with all the instrument and process parameter set for the process (JPG 396 KB)


  1. Aussel L, Pierrel F, Loiseau L et al (2014) Biosynthesis and physiology of coenzyme Q in bacteria. Biochim Biophys Acta Bioenerg 1837:1004–1011. CrossRefGoogle Scholar
  2. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8. CrossRefPubMedGoogle Scholar
  3. Carvalho FM, Souza RC, Barcellos FG et al (2010) Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 10:37. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Casella S, Bedmar EJ (2007) Denitrification in rhizobia-legume symbiosis. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, The Netherlands, pp 83–91. CrossRefGoogle Scholar
  5. Cornforth DM, Foster KR (2013) Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol 11:285–293. CrossRefPubMedGoogle Scholar
  6. D’Angelo-Picard C, Faure D, Penot I, Dessaux Y (2005) Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7:1796–1808. CrossRefPubMedGoogle Scholar
  7. Das T, Kutty SK, Tavallaie R, Ibugo AI, Panchompoo J, Sehar S, Aldous L, Yeung AW, Thomas SR, Kumar N, Gooding JJ (2015) Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Evans SE, Wallenstein MD (2014) Climate change alters ecological strategies of soil bacteria. Ecol Lett 17:155–164. CrossRefPubMedGoogle Scholar
  9. Hassett DJ, Ochsner UA, Groce SL et al (2000) Hydrogen peroxide sensitivity of catechol-2,3-dioxygenase: a cautionary note on use of xylE reporter fusions under aerobic conditions. Appl Environ Microbiol 66:4119–4123. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Henry LG, Boutrin MC, Aruni AW et al (2014) Life in a diverse oral community—strategies for oxidative stress survival. J Oral Biosci 56:63–71. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R (2016) MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:1–12. CrossRefGoogle Scholar
  12. Jadeja NB, More RP, Purohit HJ, Kapley A (2014) Metagenomic analysis of oxygenases from activated sludge. Bioresour Technol 165:250–256. CrossRefPubMedGoogle Scholar
  13. Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and -lactonase. Open Microbiol J 5:1–13. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim HS, Lee SH, Byun Y, Park HD (2015) 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Parmar K, Dafale N, Pal R, Tikariha H, Purohit H (2017) An insight into phage diversity at environmental habitats using comparative metagenomics approach. Curr Microbiol 75:132–141. CrossRefPubMedGoogle Scholar
  16. Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Silva CC, Hayden H, Sawbridge T et al (2012) Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system. AMB Express 2:18. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Tan CH, Koh KS, Xie C et al (2014) The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. ISME J 8:1186–1197. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Tsoy OV, Ravcheev DA, Čuklina J, Gelfand MS (2016) Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria. Front Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wang D, Dorosky RJ, Han CS et al (2015) Adaptation genomics of a small-colony variant in a Pseudomonas chlororaphis 30–84 biofilm. Appl Environ Microbiol 81:890–899. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Wang J, Stanford K, McAllister TA et al (2016) Biofilm formation, virulence gene profiles, and antimicrobial resistance of nine serogroups of non-O157 Shiga toxin-producing Escherichia coli. Foodborne Pathog Dis 13:316–324. CrossRefPubMedGoogle Scholar
  22. Wen ZT, Burne R (2004) LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. Society 186:2682–2691. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hitesh Tikariha
    • 1
  • Anshuman A. Khardenavis
    • 1
  • Hemant J. Purohit
    • 1
  1. 1.Environmental Biotechnology and Genomics DivisionCSIR-National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations