Archives of Microbiology

, Volume 200, Issue 5, pp 707–718 | Cite as

Isolation and characterization of a novel bacteriophage infecting Vibrio alginolyticus

  • Constantina Kokkari
  • Elena Sarropoulou
  • Roberto Bastias
  • Manolis Mandalakis
  • Pantelis Katharios
Original Paper


Vibrio alginolyticus is a common marine bacterium implicated in disease outbreaks in marine farmed fish and invertebrates. Due to the inappropriate use of antibiotics in aquaculture, alternative therapies have been proposed. One of the most promising options is the use of lytic bacteriophages to control pathogenic bacteria. This work describes the isolation and characterization of a lytic phage (VEN) against a V. alginolyticus strain (V2) isolated from a disease outbreak in common dentex (Dentex dentex) cultured at the Hellenic Centre for Marine Research (HCMR) in Crete, Greece. The bacteriophage is morphologically similar to phages from Podoviridae family and remained stable for 1 year at 4 °C and over 1 h when kept at 50 °C. VEN was able to lyse the host bacteria at several multiplicity of infection (MOI) (0.1–100) in liquid cultures. However, it was unable to infect other V. alginolyticus strains. Its genome consists of 44,603 bp with a GC content of 43.5%, while sequence analysis revealed the presence of 54 potential ORFs with a T7-like genomic organization. Almost 65% of the predicted ORFs presented homology with proteins of the vibriophages Vc1 and phi-A318 infecting Vibrio cyclitrophicus and Vibrio alginolyticus, respectively. Phylogenetic analysis applying the amino acid sequence of the large terminase subunit confirmed the close relationship of these phages. Furthermore, the comparison of the RNA polymerase of these phages revealed that the motifs A, B and C related to the catalytic activity and the recognition loop related to promotor identification were also conserved. VEN has an obligate lytic life cycle demonstrated by experimental data and genomic analysis. These results suggest that VEN may provide a good candidate to control recurrent diseases caused by V. alginolyticus at HCMR.


Phage Vibrio Genome analysis Aquaculture 



The authors would like to thank Roche Hellas as well as Jon-Bent Kristoffersen and Vasiliki Terzoglou for sequencing support. This work was supported by FISHPHAGE project 131 and ANNOTATE project (674), funded by the European Social Fund and Greek National resources under the “Excellence” scheme, NSRF 2007–2013 and by AQUAPHAGE (project 269175), FP7, Marie Curie IRSES 2010.

Author contributions

RB and PK conceived the experiments, CK, MM, RB and ES conducted the experiments, CK, ES, PK and RB analyzed the results. All authors assisted in writing the manuscript, discussed the results and reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


No special permission was required for this study.

Supplementary material

203_2018_1480_MOESM1_ESM.csv (1 kb)
Supplementary material 1 (CSV 1 KB)
203_2018_1480_MOESM2_ESM.docx (235 kb)
Supplementary material 2 (DOCX 235 KB)


  1. Abbasifar R, Kropinski AM, Sabour PM et al (2014) Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax moth) larvae. Arch Virol 159:2253–2261. CrossRefPubMedGoogle Scholar
  2. Adams MH (1959) Bacteriophages. Intersciences Publishers, New YorkGoogle Scholar
  3. Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. CrossRefGoogle Scholar
  4. Balebona MC, Andreu MJ, Bordas MA et al (1998) Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl Environ Microbiol 64:4269–4275PubMedPubMedCentralGoogle Scholar
  5. Bardina C, Colom J, Spricigo DA et al (2016) Genomics of three new bacteriophages useful in the biocontrol of Salmonella. Front Microbiol PubMedPubMedCentralCrossRefGoogle Scholar
  6. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bonner G, Patra D, Lafer EM, Sousa R (1992) Mutations in T7 RNA polymerase that support the proposal for a common polymerase active site structure. EMBO J 11:3767PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brussow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bruttin A, Desiere F, Lucchini S et al (1997) Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21. Virology 233:136–148. CrossRefPubMedGoogle Scholar
  10. Carver T, Thomson N, Bleasby A et al (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25:119–120. CrossRefPubMedGoogle Scholar
  11. Carver T, Harris SR, Berriman M et al (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469. CrossRefPubMedGoogle Scholar
  12. Casjens SR, Gilcrease EB (2009) Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Bacteriophages Methods Protoc Mol Appl Asp 2:91–111Google Scholar
  13. Castillo D, Higuera G, Villa M et al (2012) Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids. J Fish Dis 35:193–201. CrossRefPubMedGoogle Scholar
  14. Castillo D, D’Alvise P, Kalatzis PG et al (2015) Draft genome sequences of Vibrio alginolyticus strains V1 and V2, opportunistic marine pathogens. Genome Announc 3:e00729-15CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ceyssens P-JJ, Lavigne R, Mattheus W et al (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the φKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chung Y-B, Hinkle DC (1990) Bacteriophage T7 DNA Packaging. J Mol Biol 216:927–938. CrossRefPubMedGoogle Scholar
  17. Comeau AM, Chan AM, Suttle CA (2006) Genetic richness of vibriophages isolated in a coastal environment. Environ Microbiol 8:1164–1176. CrossRefPubMedGoogle Scholar
  18. Degnan PH, Michalowski CB, Babić AC et al (2007) Conservation and diversity in the immunity regions of wild phages with the immunity specificity of phage? Mol Microbiol 64:232–244. CrossRefPubMedGoogle Scholar
  19. Di Pinto A, Ciccarese G, Tantillo G et al (2005) A collagenase-targeted multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus. J Food Prot 68:150–153CrossRefPubMedGoogle Scholar
  20. Dobbins AT, Jr M, Basham G DA, et al (2004) Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J Bacteriol 186:1933–1944. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gill JJ, Hyman P (2010) Phage choice isolation and preperation for phage therapy. Curr Pharm Biotechnol 11:2–14. CrossRefPubMedGoogle Scholar
  22. Gordon D, Green P (2013) Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Higuera G, Bastías R, Tsertsvadze G et al (2013) Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar. Aquaculture 392:128–133CrossRefGoogle Scholar
  24. Hoshiba H, Uchiyama J, Kato S et al (2010) Isolation and characterization of a novel Staphylococcus aureus bacteriophage, ϕMR25, and its therapeutic potential. Arch Virol 155:545–552. CrossRefPubMedGoogle Scholar
  25. Joensen KG, Scheutz F, Lund O et al (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kajsík M, Oslanecová L, Szemes T et al (2014) Characterization and genome sequence of Dev2, a new T7-like bacteriophage infecting Cronobacter turicensis. Arch Virol 159:3013–3019. CrossRefPubMedGoogle Scholar
  27. Kalatzis PG, Bastías R, Kokkari C, Katharios P (2016) Isolation and characterization of two lytic bacteriophages, φ St2 and φ Grn1; phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim JH, Choresca CH, Shin SP et al (2015) Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using aeromonas phage PAS-1. Transbound Emerg Dis 62:81–86. CrossRefPubMedGoogle Scholar
  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefPubMedGoogle Scholar
  30. Kutter E (2009) Phage host range and efficiency of plating. Bacteriophages: methods 448 and protocols. In: Clokie M (ed) Isolation, characterization, and interactions, vol. 1, Springer Science, New York, pp 141–149Google Scholar
  31. Kwiatek M, Parasion S, Mizak L et al (2012) Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Arch Virol 157:225–234. CrossRefPubMedGoogle Scholar
  32. Laanto E, Bamford JKH, Ravantti JJ, Sundberg LR (2015) The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front Microbiol 6:1–9. CrossRefGoogle Scholar
  33. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Micro 8:317–327CrossRefGoogle Scholar
  34. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. CrossRefPubMedGoogle Scholar
  35. Li Z, Zhang J, Li X et al (2016) Efficiency of a bacteriophage in controlling vibrio infection in the juvenile sea cucumber Apostichopus japonicus. Aquaculture 451:345–352. CrossRefGoogle Scholar
  36. Lin Y-R, Chiu C-W, Chang F-Y, Lin C-S (2012) Characterization of a new phage, termed ϕA318, which is specific for Vibrio alginolyticus. Arch Virol 157:917–926CrossRefPubMedGoogle Scholar
  37. Liu B, Pop M (2009) ARDB–antibiotic resistance genes database. Nucleic Acids Res 37:D443-7. PubMedCrossRefGoogle Scholar
  38. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114CrossRefPubMedPubMedCentralGoogle Scholar
  39. Luna-González A, Maeda-Martínez AN, Sainz JC, Ascencio-Valle F (2002) Comparative susceptibility of veliger larvae of four bivalve mollusks to a Vibrio alginolyticus strain. Dis Aquat Organ 49:221–226. CrossRefPubMedGoogle Scholar
  40. Martínez-Díaz SF, Hipólito-Morales A (2013) Efficacy of phage therapy to prevent mortality during the vibriosis of brine shrimp. Aquaculture 400–401:120–124. CrossRefGoogle Scholar
  41. McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618CrossRefPubMedPubMedCentralGoogle Scholar
  42. Meaden S, Koskella B (2013) Exploring the risks of phage application in the environment. Front Microbiol 4:358. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Molineux IJ (2005) The T7 group. In: Calendar R (ed) The bacteriophages. Oxford University Press, Oxford, pp 277–301Google Scholar
  44. Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18. CrossRefPubMedGoogle Scholar
  45. Nielsen DA, Shapiro DJ (1986) Preparation of capped RNA transcripts using T7 RNA polymerase. Nucleic Acids Res 14:5936CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nishikawa H, Yasuda M, Uchiyama J et al (2008) T-even-related bacteriophages as candidates for treatment of Escherichia coli urinary tract infections. Arch Virol 153:507–515. CrossRefPubMedGoogle Scholar
  47. Noguchi T, Hwang DF, Arakawa O et al (1987) Vibrio alginolyticus, a tetrodotoxin-producing bacterium, in the intestines of the fish Fugu vermicularis vermicularis. Mar Biol 94:625–630CrossRefGoogle Scholar
  48. Ohara R, Kikuno RF, Kitamura H, Ohara O (2005) cDNA library construction from a small amount of RNA: adaptor-ligation approach for two-round cRNA amplification using T7 and SP6 RNA polymerases. Biotechniques 38:451–458. CrossRefPubMedGoogle Scholar
  49. Salamov V, Solovyevand A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture. Nova Science Publishers, Hauppauge, pp 61–78Google Scholar
  50. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schmidt U, Chmel H, Cobbs C (1979) Vibrio alginolyticus infections in humans. J Clin Microbiol 10:666–668PubMedPubMedCentralGoogle Scholar
  52. Scholl D, Kieleczawa J, Kemp P et al (2004) Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J Mol Biol 335:1151–1171. CrossRefPubMedGoogle Scholar
  53. Seed KD (2015) Battling phages: how bacteria defend against viral attack. PLoS Pathog 11:1–5. CrossRefGoogle Scholar
  54. Selvin J, Lipton AP (2003) Vibrio alginolyticus associated with white spot disease of Penaeus monodon. Dis Aquat Organ 57:147–150. CrossRefPubMedGoogle Scholar
  55. Silva YJ, Costa L, Pereira C et al (2014) Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS One CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tan D, Gram L, Middelboe M (2014) Vibriophages and their interactions with the fish pathogen Vibrio anguillarum. Appl Environ Microbiol 80:3128–3140CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thiel K (2004) Old dogma, new tricks—21st century phage therapy. Nat Biotech 22:31–36CrossRefGoogle Scholar
  59. Varvarigos P (2007) Vibrio alginolyticus combibed with motile aeromonads Aeromonas sobria and Aeromonas hydrophila comprise the main bacterial taxa responsible for gilthead sea bream (Sparus auarata) larval enteropathy (LE). In: 13th international conference “diseases of fish and shellfish.” European Association of Fish Pathologists, Grado, ItalyGoogle Scholar
  60. Vinod MG, Shivu MM, Umesha KR et al (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124. CrossRefGoogle Scholar
  61. Wittmann J, Dreiseikelmann B, Rohde M et al (2014) First genome sequences of Achromobacter phages reveal new members of the N4 family. Virol J 11:14. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yáñez R, Bastías R, Higuera G et al (2015) Amplification of tlh gene in other Vibrionaceae specie by specie-specific multiplex PCR of Vibrio parahaemolyticus. Electron J Biotechnol 18:459–463. CrossRefGoogle Scholar
  63. Zhou CE, Smith J, Lam M et al (2007) MvirDB–a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 35:D391–D394. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Marine Biology, Biotechnology and AquacultureHellenic Centre for Marine Research, Former American Base of GournesHeraklionGreece
  2. 2.Laboratorio de Microbiología, Instituto de BiologíaPontificia Universidad Católica de ValparaísoCuraumaChile

Personalised recommendations